## 全球负荷球谐分析与负荷形变场球谐综合

#### 8.2.1 地表负荷等效水高球谐级数表示

地球表层大气、土壤水、江河湖库水、冰川冰盖雪山、地下水和海平面变化等地表非 潮汐负荷变化,可用地面等效水高变化 $h_w$ 或地表单位点质量负荷 $q_w = \rho_w h_w$ (也称地表 面密度, $\rho_w$ 为水的密度)统一表示。

地表非潮汐负荷变化 $h_w$ (地表物质迁移)直接引起地球外部重力位变化,对地面或地 球外部点 $(r, \theta, \lambda)$ 重力位产生直接影响 $\Delta V^*(r, \theta, \lambda)$ ,可表示为:

 $\Delta V^*(r,\theta,\lambda) = \frac{GM}{r} \sum_{n=0}^{\infty} \left(\frac{a}{r}\right)^n \sum_{m=0}^n (\Delta \bar{C}^*_{nm} cosm\lambda + \Delta \bar{S}^*_{nm} sinm\lambda) \bar{P}_{nm}(cos\theta)$  (2.1) 式中: r为计算点的地心向径(地心距),  $(\Delta \bar{C}^*_{nm}, \Delta \bar{S}^*_{nm})$ 为地表非潮汐负荷变化(即地面等 效水高变化 $h_w$ ) 直接引起的规格化重力位系数变化,即全球重力位模型 Stokes 系数的直接影响,可按面密度引力位定义计算:

$$\begin{cases} \Delta \bar{C}_{nm}^{*} \\ \Delta \bar{S}_{nm}^{*} \end{cases} = \frac{3\rho_{w}}{4\pi a \rho_{e}(2n+1)} \left(\frac{r}{a}\right)^{n} \int_{S}^{\square} h_{w} \bar{P}_{nm}(\cos\theta) \begin{cases} \cos m\lambda \\ sinm\lambda \end{cases} \sin\theta d\theta d\lambda dr$$
(2.2)

式中:  $\int_{S}^{\Box} dS$ 为全球地面积分,  $dS = sin\theta d\theta d\lambda dr$ ,  $\rho_e$ 为地球平均密度。

地面点 $(r_0 \approx a, \theta, \lambda)$ 的等效水高变化 $h_w$ 也可表示为规格化负荷球谐函数级数

 $h_{w}(r_{0},\theta,\lambda) = r_{0} \sum_{n=1}^{\infty} \left(\frac{a}{r_{0}}\right)^{n} \sum_{m=0}^{n} (\Delta \bar{C}_{nm}^{w} cosm\lambda + \Delta \bar{S}_{nm}^{w} sinm\lambda) \bar{P}_{nm}(cos\theta) (2.3)$ 式中:  $\Delta \bar{C}_{nm}^{w}, \Delta \bar{S}_{nm}^{w} \exists n m m \chi M R \ell \Lambda \oplus \pi$ 谐系数。

考虑到一般情况下全球地表非潮汐变化负荷中长波占优, n不会太大, 而地面负荷的 地心向径 $r_0 \approx a$ , 因此有 $\left(\frac{a}{r_0}\right)^n \approx 1$ ,则式 (2.3)可简化为:

$$h_{w} = a \sum_{n=1}^{\infty} \sum_{m=0}^{n} (\Delta \bar{C}_{nm}^{w} cosm\lambda + \Delta \bar{S}_{nm}^{w} sinm\lambda) \bar{P}_{nm}(cos\theta)$$
(2.4)  
 $\text{Lix}(2.2) \ \pi (2.3) \ \exists, \ \exists \in \mathbb{R}^{+}$ 

$$\begin{cases} \Delta \bar{C}_{nm}^* \\ \Delta \bar{S}_{nm}^* \end{cases} = \frac{3\rho_w}{\rho_e} \frac{1}{2n+1} \begin{cases} \Delta \bar{C}_{nm}^w \\ \Delta \bar{S}_{nm}^w \end{cases}$$
(2.5)

式(2.5)即为任意n阶m次地面等效水高规格化球谐系数变化{ $\Delta \bar{C}_{nm}^{w}, \Delta \bar{S}_{nm}^{w}$ }与规格化 重力位系数直接影响( $\Delta \bar{C}_{nm}^{*}, \Delta \bar{S}_{nm}^{*}$ )之间的关系式。

#### 8.2.2 负荷形变场规格化球谐级数展开

由负荷形变理论可知,地面等效水高变化h<sub>w</sub>还导致固体地球形变,致使地球质量进 一步重新调整,产生附加引力位,间接引起地球重力位变化,称为地面等效水高变化的间 接影响,用负荷勒夫数或负荷潮因子表征。 任意n阶m次地面等效水高变化规格化球谐系数{*ΔC*<sub>nm</sub>,*ΔS*<sub>nm</sub>},对重力位系数的总影 响,等于其直接影响和间接影响之和,称为重力位系数变化的负荷效应,即

$$\begin{cases} \Delta C_{nm} \\ \Delta \bar{S}_{nm} \end{cases} = (1+k'_n) \begin{cases} \Delta C^*_{nm} \\ \Delta \bar{S}^*_{nm} \end{cases} = \frac{_{3\rho_w} _{1+k'_n} \left\{ \Delta C^W_{nm} \\ \rho_e ^{\frac{1}{2n+1}} \left\{ \Delta \bar{S}^w_{nm} \right\} \end{cases}$$
(2.6)

式中: k'n为n阶位负荷勒夫数。

由扰动重力场球谐展开式与负荷形变理论可得,由地面等效水高球谐系数变化 {*ΔĈ<sub>nm</sub>,ΔŜ<sub>nm</sub>*},计算地面或地球外部点(*r*,*θ*,*λ*)处,重力位负荷效应*ΔV*(*r*,*θ*,*λ*)的球谐综合 算法公式为:

$$\Delta V = \frac{GM}{r} \frac{3\rho_w}{\rho_e} \sum_{n=1}^{\infty} \left(\frac{a}{r}\right)^n \frac{1+k'_n}{2n+1} \sum_{m=0}^n (\Delta \bar{C}^w_{nm} cosm\lambda + \Delta \bar{S}^w_{nm} sinm\lambda) \bar{P}_{nm}(cos\theta) \quad (2.7)$$

由 Bruns 公式得,地面或地球外部点 $(r, \theta, \lambda)$ 处高程异常负荷效应 $\Delta \zeta(r, \theta, \lambda)$ 的球谐综 合公式:

 $\Delta \zeta = \frac{GM}{r\gamma} \frac{3\rho_w}{\rho_e} \sum_{n=1}^{\infty} \left(\frac{a}{r}\right)^n \frac{1+k'_n}{2n+1} \sum_{m=0}^n (\Delta \bar{C}_{nm}^w cosm\lambda + \Delta \bar{S}_{nm}^w sinm\lambda) \bar{P}_{nm}(cos\theta)$ (2.8) 式中:  $\gamma$ 为计算点的正常重力。同理,可得地面重力负荷效应球谐综合计算式④

$$\Delta g^{s}(r_{0},\theta,\lambda) = \frac{GM}{r_{0}^{2}} \frac{3\rho_{w}}{\rho_{e}} \sum_{n=1}^{\infty} \frac{n+1}{2n+1} \left(1 + \frac{2}{n}h_{n}' - \frac{n+1}{n}k_{n}'\right) \left(\frac{a}{r_{0}}\right)^{n}$$

 $\sum_{m=0}^{n} (\Delta \bar{C}_{nm}^{w} cosm\lambda + \Delta \bar{S}_{nm}^{w} sinm\lambda) \bar{P}_{nm} (cos\theta)$ (2.9)

式中: $h'_n$ 为n阶径向负荷勒夫数; $(r_0, \theta, \lambda)$ 为地面计算点的球坐标。

地面或地球外部点(r,θ,λ)处扰动重力负荷效应球谐综合计算式:

$$\Delta g^{\delta}(r,\theta,\lambda) = \frac{GM}{r^2} \frac{3\rho_w}{\rho_e} \sum_{n=1}^{\infty} \frac{n+1}{2n+1} (1+k'_n) \left(\frac{a}{r}\right)^n$$

 $\sum_{m=0}^{n} (\Delta \bar{C}_{nm}^{w} cosm\lambda + \Delta \bar{S}_{nm}^{w} sinm\lambda) \bar{P}_{nm} (cos\theta)$ (2.10)

与(2.9)式相比,(2.10)式不含地面径向位移影响,因此,(2.9)式仅适用于计算点 位与地球固连的重力负荷效应,而(2.10)式适用于计算地面及地面外部空间任意点(如 航空高度、卫星高度或海洋空间)的重力负荷效应。为区分这两种情况,这里将仅适用于 点位与地球固连情况下的计算式标注④。

正常重力场是扰动重力场及其随时间变化的起算基准,不随时间变化,因此,重力、 扰动重力与空间重力异常的潮汐或非潮汐效应,没有区别。式(2.10)中的"扰动"重力负 荷效应,特指负荷效应不含径向形变影响,下同。

地倾斜负荷效应球谐综合计算式④:

南向: Δξ<sup>s</sup>(r<sub>0</sub>, θ, λ) = 
$$\frac{GM}{r_0^2} \frac{3\rho_w}{\gamma\rho_e} \sin \theta \sum_{n=1}^{\infty} \frac{1+k'_n-h'_n}{2n+1} \left(\frac{a}{r_0}\right)^n$$

$$\sum_{m=0}^{n} (\Delta \bar{C}_{nm}^{w} cosm\lambda + \Delta \bar{S}_{nm}^{w} sinm\lambda) \frac{\partial}{\partial \theta} \bar{P}_{nm} (cos\theta)$$
(2.11)

西向: 
$$\Delta\eta^{s}(r_{0},\theta,\lambda) = \frac{GM}{r_{0}^{2}\sin\theta} \frac{3\rho_{w}}{\gamma\rho_{e}} \sum_{n=1}^{\infty} \frac{1+k_{n}'-h_{n}'}{2n+1} \left(\frac{a}{r_{0}}\right)^{n}$$
  
 $\sum_{m=1}^{n} m(\Delta \bar{C}_{nm}^{w} sinm\lambda - \Delta \bar{S}_{nm}^{w} cosm\lambda) \bar{P}_{nm}(cos\theta)$  (2.12)

地面或地球外部空间点(*r*, *θ*, *λ*)处垂线偏差负荷效应球谐综合计算式:

南向: 
$$\Delta\xi(r,\theta,\lambda) = \frac{GM}{r^2} \frac{3\rho_W}{\gamma\rho_e} \sin\theta \sum_{n=1}^{\infty} \frac{1+k'_n}{2n+1} \left(\frac{a}{r}\right)^n$$
  
 $\sum_{n=1}^n \left(A\bar{C}^W \cos n \lambda + A\bar{S}^W \sin n \lambda\right)^n \bar{P} = (\cos \theta)$  (2.13)

$$\sum_{m=0} (\Delta c_{nm} \cos m \lambda + \Delta s_{nm} \sin m \lambda) \frac{\partial \theta}{\partial \theta} r_{nm} (\cos \theta)$$
 (2.13)

西向: 
$$\Delta\eta(r,\theta,\lambda) = \frac{GM}{r^2 \sin \theta} \frac{3\rho_w}{\gamma \rho_e} \sum_{n=1}^{\infty} \frac{1+k_n'}{2n+1} \left(\frac{a}{r}\right)^n$$

$$\sum_{m=1}^{n} m(\Delta \bar{C}_{nm}^{w} sinm\lambda - \Delta \bar{S}_{nm}^{w} cosm\lambda) \bar{P}_{nm}(cos\theta)$$
(2.14)

地面站点(r<sub>0</sub>, θ, λ)位移负荷效应球谐综合计算式④:

东向: 
$$\Delta e(r_0, \theta, \lambda) = -\frac{GM}{r_0 \gamma \sin \theta} \frac{3\rho_w}{\rho_e} \sum_{n=1}^{\infty} \frac{l'_n}{2n+1} \left(\frac{a}{r_0}\right)^n$$
  
 $\sum_{m=1}^n m(\Delta \bar{C}_{nm}^w \sin m\lambda - \Delta \bar{S}_{nm}^w \cos m\lambda) \bar{P}_{nm}(\cos \theta)$  (2.15)

北向: 
$$\Delta n(r_0, \theta, \lambda) = -\frac{GM}{r_0 \gamma} \frac{3\rho_w}{\rho_e} \sin \theta \sum_{n=1}^{\infty} \frac{l'_n}{2n+1} \left(\frac{a}{r_0}\right)^n$$

$$\sum_{m=0}^{n} (\Delta \bar{C}_{nm}^{w} cosm\lambda + \Delta \bar{S}_{nm}^{w} sinm\lambda) \frac{\partial}{\partial \theta} \bar{P}_{nm}(cos\theta)$$
(2.16)

径向: 
$$\Delta r(r_0, \theta, \lambda) = \frac{GM}{r_0 \gamma} \frac{3\rho_w}{\rho_e} \sum_{n=1}^{\infty} \frac{h'_n}{2n+1} \left(\frac{a}{r_0}\right)^n$$
  
 $\sum_{m=0}^n (\Delta \bar{C}_{nm}^w cosm\lambda + \Delta \bar{S}_{nm}^w sinm\lambda) \bar{P}_{nm}(cos\theta)$  (2.17)

地面或地球外部空间点(*r*, *θ*, *λ*)处重力梯度负荷效应(径向)球谐综合计算式:

$$\Delta T_{rr}(r,\theta,\lambda) = \frac{GM}{r^3} \frac{3\rho_w}{\rho_e} \sum_{n=1}^{\infty} \frac{(n+1)(n+2)}{2n+1} (1+k'_n) \left(\frac{a}{r}\right)^n$$
$$\sum_{m=0}^n (\Delta \bar{C}_{nm}^w \cos m\lambda + \Delta \bar{S}_{nm} \sin m\lambda) \bar{P}_{nm} (\cos \theta)$$
(2.18)

 $\sum_{m=0}^{n} (\Delta C_{nm}^{w} cosm\lambda + \Delta S_{nm} sinm\lambda) P_{nm} (cos\theta)$ 

北向: 
$$\Delta T_{NN}(r,\theta,\lambda) = -\frac{GM}{r^3} \frac{3\rho_w}{\rho_e} \sum_{n=1}^{\infty} \frac{1+k'_n}{2n+1} \left(\frac{a}{r}\right)^n$$
  
 $\sum_{m=0}^n (\Delta \bar{C}^w_{nm} cosm\lambda + \Delta \bar{S}^w_{nm} sinm\lambda) \frac{\partial^2}{\partial \theta^2} \bar{P}_{nm} (cos\theta)$  (2.19)

西向: 
$$\Delta T_{WW}(r, \theta, \lambda) = -\frac{GM}{r^3 sin^2 \theta} \frac{3\rho_w}{\rho_e} \sum_{n=1}^{\infty} \frac{1+k'_n}{2n+1} \left(\frac{a}{r}\right)^n$$
  
 $\sum_{m=1}^n m^2 (\Delta \bar{C}^w_{nm} sinm\lambda + \Delta \bar{S}^w_{nm} cosm\lambda) \bar{P}_{nm}(cos\theta)$  (2.20)

在(2.8)~(2.20)中,凡标注●的大地测量要素(观测量或参数),只有其点位与地 球固连情况下有效。其中,一阶项(*n* = 1)表示地表负荷形变引起地球质心变化,对大地 测量要素的影响,表征大地测量要素的地球质心变化效应。地球质心变化在形变大地测 量学中具有作用地位,上述各式中的一阶项不能忽略。

依据 Farrell 地表负荷形变理论,采用球对称无旋转弹性地球模型 PREM 有关参数,可计算地表单位点质量负荷(地表面密度,1kg/m<sup>2</sup>)作用下的负荷勒夫数。*n*阶径向、水平和位负荷勒夫数*h'n、l'n*和*k'n*如表 2.1。

| 阶数n | $h'_n$        | $l'_n$       | <i>k</i> ′ <sub><i>n</i></sub> |
|-----|---------------|--------------|--------------------------------|
| 1   | -0.2871129880 | 0.1045044062 | 0                              |
| 2   | -0.9945870591 | 0.0241125159 | -0.3057703360                  |
| 3   | -1.0546530210 | 0.0708549368 | -0.1962722363                  |
| 4   | -1.0577838950 | 0.0595872318 | -0.1337905897                  |
| 5   | -1.0911859150 | 0.0470262750 | -0.1047617976                  |
| 6   | -1.1492536560 | 0.0394081176 | -0.0903495805                  |
| 7   | -1.2183632010 | 0.0349940065 | -0.0820573391                  |
| 8   | -1.2904736610 | 0.0322512320 | -0.0765234897                  |
| 9   | -1.3618478650 | 0.0303856246 | -0.0723928769                  |
| 10  | -1.4309817610 | 0.0290225900 | -0.0690776844                  |
| 12  | -1.5609348550 | 0.0271636708 | -0.0638847506                  |
| 14  | -1.6797703790 | 0.0259680057 | -0.0598385602                  |
| 16  | -1.7880882500 | 0.0251266737 | -0.0564748883                  |
| 18  | -1.8864404740 | 0.0244708343 | -0.0535490132                  |
| 20  | -1.9754659020 | 0.0238986214 | -0.0509272630                  |
| 25  | -2.1615247260 | 0.0225448633 | -0.0452625739                  |
| 30  | -2.3044581340 | 0.0211578086 | -0.0405033192                  |
| 35  | -2.4152406280 | 0.0197609745 | -0.0364524519                  |
| 40  | -2.5028874800 | 0.0184188171 | -0.0329970228                  |
| 45  | -2.5741299450 | 0.0171690959 | -0.0300450548                  |
| 50  | -2.6337485520 | 0.0160264262 | -0.0275153569                  |
| 60  | -2.7300189390 | 0.0140651027 | -0.0234487653                  |
| 70  | -2.8076818590 | 0.0124702089 | -0.0203629907                  |
| 80  | -2.8746338100 | 0.0111640070 | -0.0179658948                  |
| 90  | -2.9350553590 | 0.0100800427 | -0.0160636283                  |
| 100 | -2.9913054190 | 0.0091686192 | -0.0145257169                  |
| 120 | -3.0965116190 | 0.0077267323 | -0.0122109806                  |

表 2.1 负荷勒夫数取值

| 140<br>150<br>160 | -3.1965444360<br>-3.2455767690<br>-3.2942117980 | 0.0066448758<br>0.0062018042 | -0.0105711243<br>-0.0099238838 |
|-------------------|-------------------------------------------------|------------------------------|--------------------------------|
| 150<br>160        | -3.2455767690<br>-3.2942117980                  | 0.0062018042                 | -0.0099238838                  |
| 160               | -3.2942117980                                   |                              |                                |
|                   |                                                 | 0.0058106942                 | -0.0093636844                  |
| 180               | -3.3907532400                                   | 0.0051551676                 | -0.0084470364                  |
| 200               | -3.4867370690                                   | 0.0046324760                 | -0.0077337989                  |
| 250               | -3.7248624300                                   | 0.0037212221                 | -0.0065109062                  |
| 300               | -3.9588101480                                   | 0.0031642726                 | -0.0057493979                  |
| 350               | -4.1853482260                                   | 0.0028105951                 | -0.0052320414                  |
| 400               | -4.4014325530                                   | 0.0025772705                 | -0.0048534799                  |
| 450               | -4.6045856190                                   | 0.0024162122                 | -0.0045579733                  |
| 500               | -4.7931516890                                   | 0.0022987082                 | -0.0043145187                  |
| 600               | -5.1234075730                                   | 0.0021315364                 | -0.0039191204                  |
| 700               | -5.3914177940                                   | 0.0020034613                 | -0.0035936423                  |
| 800               | -5.6025165630                                   | 0.0018887552                 | -0.0033104524                  |
| 1000              | -5.8875374130                                   | 0.0016743075                 | -0.0028324828                  |
| 1500              | -6.1543113080                                   | 0.0012327687                 | -0.0020071634                  |
| 2000              | -6.2038470670                                   | 0.0009427101                 | -0.0015226332                  |
| 3000              | -6.2137113920                                   | 0.0006307787                 | -0.0010176493                  |
| 4000              | -6.2144649520                                   | 0.0004731032                 | -0.0007634795                  |
| 5000              | -6.2148224370                                   | 0.0003784752                 | -0.0006108869                  |
| 6000              | -6.2150593160                                   | 0.0003153917                 | -0.0005091296                  |
| 8000              | -6.2153555850                                   | 0.0002365398                 | -0.0003819009                  |
| 10000             | -6.2155334610                                   | 0.0001892299                 | -0.0003055465                  |
| 12000             | -6.2156520860                                   | 0.0001576905                 | -0.0002546364                  |
| 14000             | -6.2157368460                                   | 0.0001351626                 | -0.0002182685                  |
| 18000             | -6.2158498910                                   | 0.0001051258                 | -0.0001697735                  |
| 25000             | -6.2159607070                                   | 0.0000756901                 | -0.0001222433                  |
| 30000             | -6.2160082030                                   | 0.0000630749                 | -0.0001018717                  |
| 32000             | -6.2160230550                                   | 0.0000591327                 | -0.0000955054                  |
| 32768             | -6.2160282710                                   | 0.0000577468                 | -0.0000932672                  |
| 8                 | -6.2091440000                                   | 0.000000000                  | 0.0000000000                   |

# 8.2.3 规格化缔合勒让德函数及对θ导数

用(2.8)~(2.20)球谐综合式计算大地测量要素负荷效应时,需要计算规格化缔合 勒让德函数 $\bar{P}_{nm}(cos\theta)$ 及其对 $\theta$ 的一、二阶导数,这里令 $t = cos\theta$ , $u = sin\theta$ ,直接给出几种 快速算法。

(1) *P<sub>nm</sub>(t*)标准前向列递推算法(*n* < 1900)

$$\begin{cases} \bar{P}_{nm}(t) = a_{nm}t\bar{P}_{n-1,m}(t) - b_{nm}\bar{P}_{n-2,m}(t) \quad \forall n > 1, m < n \\ \bar{P}_{nn}(t) = u\sqrt{\frac{2n+1}{2n}}\bar{P}_{n-1,n-1} \quad n > 1 \end{cases}$$

$$a_{nm} = \sqrt{\frac{(2n-1)(2n+1)}{(n+m)(n-m)}}, \quad b_{nm} = \sqrt{\frac{(2n+1)(n+m-1)(n-m-1)}{(2n-3)(n+m)(n-m)}}$$

$$\bar{P}_{00}(t) = 1, \quad \bar{P}_{10}(t) = \sqrt{3}t, \quad \bar{P}_{11}(t) = \sqrt{3}u \qquad (2.22)$$

(2) *P<sub>nm</sub>(t*)改进 Belikov 递推算法(*n* < 64800)</li>
 当*n* = 0,1时,采用(2.22)式;当*n* ≥ 2时:

$$\bar{P}_{n0}(t) = a_n t \bar{P}_{n-1,0}(t) - b_n \frac{u}{2} \bar{P}_{n-1,1}(t), \quad m = 0$$
(2.23)

$$\bar{P}_{nm}(t) = c_{nm} t \bar{P}_{n-1,m}(t) - d_{nm} u \bar{P}_{n-1,m+1}(t) + e_{nm} u \bar{P}_{n-1,m-1}(t), \ m > 0 \ (2.24)$$

$$a_n = \sqrt{\frac{2n+1}{2n-1}}, \quad b_n = \sqrt{\frac{2(n-1)(2n+1)}{n(2n-1)}}$$
 (2.25)

$$c_{nm} = \frac{1}{n} \sqrt{\frac{(n+m)(n-m)(2n+1)}{2n-1}}, \quad d_{nm} = \frac{1}{2n} \sqrt{\frac{(n-m)(n-m-1)(2n+1)}{2n-1}}$$
(2.26)

当*m* >0 时,有

$$e_{nm} = \frac{1}{2n} \sqrt{\frac{2}{2 - \delta_0^{m-1}}} \sqrt{\frac{(n+m)(n+m-1)(2n+1)}{2n-1}}$$
(2.27)

(3) *Ā<sub>nm</sub>(t*)函数跨阶次递推算法(*n* < 20000) 当*n* = 0,1时,采用(2.22)式;当*n* ≥ 2时:

$$\bar{P}_{nm}(t) = \alpha_{nm}\bar{P}_{n-2,m}(t) + \beta_{nm}\bar{P}_{n-2,m-2}(t) - \gamma_{nm}\bar{P}_{n,m-2}(t)$$
(2.28)

$$\alpha_{nm} = \sqrt{\frac{(2n+1)(n-m)(n-m-1)}{(2n-3)(n+m)(n+m-1)}}$$

$$\beta_{nm} = \sqrt{1 + \delta_0^{m-2}} \sqrt{\frac{(2n+1)(n+m-2)(n+m-3)}{(2n-3)(n+m)(n+m-1)}}$$

$$\gamma_{nm} = \sqrt{1 + \delta_0^{m-2}} \sqrt{\frac{(n-m+1)(n+m-3)}{(n+m)(n+m-1)}}$$
(2.29)

(4)  $\frac{\partial}{\partial \theta} \bar{P}_{nm}(\cos \theta)$ 的非奇异递推算法

$$\frac{\partial}{\partial \theta} \bar{P}_{nm}(\cos \theta) = -\sin \theta \frac{\partial}{\partial t} \bar{P}_{nm}(t)$$
(2.30)

为 $\bar{P}_{nm}(\cos\theta)$ 对 $\theta$ 的一阶偏导数。

$$\begin{cases} \frac{\partial}{\partial \theta} \bar{P}_{n0}(t) = -\sqrt{\frac{n(n+1)}{2}} \bar{P}_{n1}(t), & \frac{\partial}{\partial \theta} \bar{P}_{n1}(t) = \sqrt{\frac{n(n+1)}{2}} \bar{P}_{n0} - \frac{\sqrt{(n-1)(n+2)}}{2} \bar{P}_{n2} \\ \frac{\partial}{\partial \theta} \bar{P}_{nm}(t) = \frac{\sqrt{(n+m)(n-m+1)}}{2} \bar{P}_{n,m-1}(t) - \frac{\sqrt{(n-m)(n+m+1)}}{2} \bar{P}_{n,m+1}(t), & m > 2 \end{cases}$$
(2.31)

$$\frac{\partial}{\partial\theta}\bar{P}_{00}(t) = 0, \quad \frac{\partial}{\partial\theta}\bar{P}_{10}(t) = -\sqrt{3}u, \quad \frac{\partial}{\partial\theta}\bar{P}_{11}(t) = \sqrt{3}t \tag{2.32}$$

(5)  $\frac{\partial^2}{\partial \theta^2} \bar{P}_{nm}$ 的非奇异递推算法

$$\begin{cases} \frac{\partial^{2}}{\partial\theta^{2}}\bar{P}_{n0}(t) = -\frac{n(n+1)}{2}\bar{P}_{n0}(t) + \sqrt{\frac{n(n-1)(n+1)(n+2)}{8}}\bar{P}_{n2}(t) \\ \frac{\partial^{2}}{\partial\theta^{2}}\bar{P}_{n1}(t) = -\frac{2n(n+1)+(n-1)(n+2)}{4}\bar{P}_{n1}(t) + \frac{\sqrt{(n-2)(n-1)(n+2)(n+3)}}{4}\bar{P}_{n3}(t) \end{cases}$$
(2.33)  
$$\frac{\partial^{2}}{\partial\theta^{2}}\bar{P}_{nm}(t) = \frac{\sqrt{(n-m+1)(n-m+2)(n+m-1)(n+m)}}{4}\bar{P}_{n,m-2}(t) \\ -\frac{(n+m)(n-m+1)+(n-m)(n+m+1)}{4}\bar{P}_{nm}(t) \\ + \frac{\sqrt{(n-m-1)(n-m)(n+m+1)(n+m+2)}}{4}\bar{P}_{n,m+2}(t), \quad m > 2 \end{cases}$$
(2.34)

$$\frac{\partial^2}{\partial\theta^2}\bar{P}_{00}(t) = 0, \quad \frac{\partial^2}{\partial\theta^2}\bar{P}_{10}(t) = -\sqrt{3}t, \quad \frac{\partial^2}{\partial\theta^2}\bar{P}_{11}(t) = -\sqrt{3}u \tag{2.35}$$

### 8.2.4 海平面变化球谐分析与负荷形变场球谐综合

海水质量变化通常由海平面高度变化、海水温度效应、海水密度变化和密度流质量运 输等因素构成,其中海水温度变化、密度变化和密度流质量运输(以下统称温盐分布变 化)导致海水质量变化所占比例不到 1%,且这种随时间的变化量一般难以准确测定,而 海平面变化能采用验潮站和多种海洋测高卫星精准高效监测,因此,通常忽略海水温盐 分布变化及其大地测量效应。

### 8.2.4.1 海平面变化球谐分析与负荷球谐模型构建

全球海平面变化球谐分析可采用(3.4)式,按快速 Fourier 算法计算。此时,先综合 各种海面高观测数据,构造球坐标系下海平面变化格网时间序列(统一移去某一参考历 元时刻的海面高格网,或某段时期内平均海面高格网),再分别对每一采样历元时刻的海 平面变化格网按(3.4)式进行球谐分析,生成海平面变化负荷球谐系数模型时间序列。 海平面变化格网的空间分辨率决定了其负荷球谐模型的最大阶数,负荷球谐系数模型时 间序列的采样历元时刻与海平面变化格网时间序列——对应。

式(3.4)将海平面高度变化直接表示为半径等于地球长半轴a球面上面谐函数的线性 组合,地球重力场的球谐表达式也是线性的,可见,采用累积迭代球谐分析法,可有效提 高海平面变化负荷球谐系数模型的逼近水平。

图 2.1 为 ETideLoad4.5 全球海平面变化球谐分析程序计算结果,程序输入 0.5°×0.5° 全球海平面变化球坐标格网时间序列 (其中,第一个历元时刻海平面变化格网如右中图,

7

陆地区域置零),按(3.4)式,采用迭代累积逼近方法(迭代残差变化如右下图),构造 360阶海平面变化负荷球谐系数模型时间序列(其中,第一个历元时刻海平面变化负荷球 谐系数模型如左下图)。

海平面变化负荷球谐系数模型(左下图)的头文件分别是地心引力常数*GM*(×10<sup>14</sup>m <sup>3</sup>/s<sup>2</sup>),地球长半轴*a*(m),零阶项*a*Δ*C*<sub>00</sub>(cm),相对误差θ(%)。θ为最终迭代残差标准 差与输入原格网标准差的百分比。球谐系数最大阶数*n*等于全球地表负荷格网在纬度方向 格网数,本例输入 0.5°×0.5°分辨率格网模型,对应最大阶数*n* =360。

GM, a也称为负荷球谐系数模型的尺度参数,表示球谐系数的面谐基函数定义在半径 等于地球长半轴a的球面上。零阶项 $a\Delta C_{00}$ 代表海平面变化导致的全球海洋总质量的变化, 在地球质量守恒条件下无意义,实际计算一般忽略零阶项。3个一阶项球谐系数  $(\Delta \overline{C}_{10}^{sea}, \Delta \overline{C}_{11}^{sea})$ 代表海平面变化引起的地球质心变化。



图 2.1 全球海平面变化球谐分析与负荷球谐模型构建

对于高精度大地测量,全球海平面变化短波成分不可忽略,需要一定分辨率的格网模型才能满足精度要求,相应地,需要较大阶数球谐系数模型表示。负荷球谐系数模型最大阶数基本由负荷的全球频谱结构与负荷效应的精度要求决定。表 2.1 给出某一历元时刻 全球海平面变化负荷球谐分析结果随格网分辨率(最大阶数)变化情况。 表 2.2 显示, 该历元时刻全球海平面变化的中短波成分明显, 兼顾精度与计算效率, 该历元时刻的海平面变化负荷球谐系数模型的适宜最大阶数可选择 360 阶。

| 输入格网    | 旱土欧粉 | 重阶顶 am | 一阶项×10⁻ュ⁰             |                       |                       | 残差相对  |
|---------|------|--------|-----------------------|-----------------------|-----------------------|-------|
| 分辨率     | 取入例数 | 令所切い   | $\Delta C_{10}^{sea}$ | $\Delta C_{11}^{sea}$ | $\Delta S_{11}^{sea}$ | 误差%   |
| 1°×1°   | 180  | 0.1278 | -7.14017              | -0.74191              | 6.93210               | 6.519 |
| 30'×30' | 360  | 0.1419 | -7.29329              | -0.81169              | 7.57094               | 5.075 |
| 15'×15' | 720  | 0.1273 | -7.19655              | -0.71797              | 6.86062               | 3.566 |

表 2.2 海平面变化负荷球谐分析残差随格网分辨率变化情况

### 8.2.4.2 海平面变化负荷效应球谐综合计算

已知海平面变化负荷球谐系数模型,就可按(3.8)~(3.20)式的球谐综合算法,计 算全球地面或地球外部任意空间点的高程异常、地面重力、扰动重力、地倾斜(SW 南向 /西向)、垂线偏差(SW 南向/西向)、水平位移(EN 东向/北向)、地面径向(大地高)、 地面正(常)高、扰动重力梯度或水平重力梯度的(非潮汐)海平面变化负荷(形变)效 应,计算固体地球外部空间(包括海洋、航空或卫星高度)的海平面变化负荷重力位、引 力(加速度)或扰动重力梯度摄动。



图 2.2 海平面变化负荷效应格网时间序列计算

图 2.2 为 ETideLoad4.5 海平面变化负荷形变效应球谐综合程序计算结果,程序输入 计算区域数字高程模型格网(用于指定计算点位置和范围),由海平面变化负荷球谐系数 模型时间序列,选择最大计算阶数 360,按(3.8)~(3.20)式,计算地面大地测量全要 素海平面变化负荷形变效应格网时间序列。

图 2.3 为地球卫星海平面变化负荷的扰动位与重力梯度摄动计算结果。



图 2.3 地球卫星海平面变化负荷摄动计算

也可以直接将(3.3)式用作观测方程,以全球海平面变化为观测量,严格按最小二乘 法估计海平面变化负荷球谐系数,从而直接在谱域中构建海平面变化负荷球谐系数模型, 则由该负荷球谐系数模型计算的海平面变化负荷也会严格位于海平面上,这样,计算点 与负荷流动面元的空间坐标都在同一地球坐标系中,计算点的高度,与海平面变化负荷 所在位置的高度完全统一。但是,若用批量的全球海平面变化时间序列,按最小二乘法估 计负荷球谐系数模型时间序列,由于待估负荷球谐系数的数量(*N* + 1)<sup>2</sup>随最大阶数*N*快速 递增,计算量因此迅速增大,计算效率快速降低,实际计算时很少采用。

由(3.4) 式按快速 Fourier 算法构建的海平面变化负荷球谐系数模型时,已假设海平 面变化负荷位于半径等于地球长半轴a的球面上,因此,用该负荷球谐系数模型计算的海 平面变化负荷也位于该球面上。当计算点位于海岸带、海域的地面或近地空间,可将负荷 形变效应的计算点高度取计算点相对于平均海面的高度,即正(常)高,以保证计算点与 海平面上负荷流动面元之间准确的空间位置关系。与按计算点大地高和严密最小二乘估 计的球谐系数模型的计算结果相比,近距离负荷效应最大近似误差为二阶近似 $O^2((a - b + \zeta)/R) < 1.25 \times 10^{-6}, \zeta$ 为计算点处的高程异常, a, b, R为分别为地球的长半轴、短 半轴和平均半径),即小于总负荷效应的  $10^{-6}$ ,完全可以忽略不计。当计算点远离海岸带 的大陆地区、10 千米以上的高空或卫星高度时,可用大地高直接代替正常高。

下面直接利用 Aviso 多种海洋测高卫星联合的 15'×15'全球海平面月/周变化(海平面 距平),扣除 2018 年平均值后,构造 2018 年 1 月至 2020 年 12 月 0.5°×0.5°全球海平面 周变化(cm)球坐标格网时间序列(共 157 个采样历元),之后采用(3.4)式,按快速 Fourier 算法,构建 360 阶海平面变化负荷球谐系数周变化模型(m)时间序列,最后, 再按(3.8)~(3.20)式的负荷效应球谐综合算法,计算中国沿海 12 座验潮站处(纬度 18°N~40°N)地面全要素海平面变化负荷效应。

图 2.4~图 2.7 分别为 12 座验潮站处 2018 年 1 月至 2020 年 12 月全球海平面周变化 负荷引起的大地水准面周变化时间序列 mm、地面重力周变化时间序列 μGal、地面大地 高周变化时间序列 mm 和扰动重力梯度周变化时间序列 10μE 曲线。





图 2.4 中国沿海 12 座验潮站处海平面变化负荷效应-大地水准面周变化 mm

图 2.5 中国沿海 12 座验潮站处海平面变化负荷效应-地面重力周变化 μGal



图 2.6 中国沿海 12 座验潮站处海平面变化负荷效应-地面大地高周变化 mm



图 2.7 中国沿海 12 座验潮站处海平面变化负荷效应-扰动重力梯度周变化 10µE

### 8.2.5 大气压球谐分析与负荷形变场球谐综合计算

### 8.2.5.1 大气层密度变化负荷效应与地面大气压负荷效应

大气负荷效应原则上要对整个大气层空间密度变化进行三维积分,分别计算大气层密 度变化对地面及地球外部各种大地测量参数或观测量的直接影响和间接影响。实际计算 时,通常利用地面大气压变化负荷效应与大气层空间密度变化负荷效应的某种近似等效 关系,由地面大气压变化,计算地面或地面外部各种大地测量参数或观测量的大气负荷 效应。

这里推荐一种满足大地测量精度要求的简化计算方案。计算大气负荷间接影响时, 假 设大气压负荷集中于地面, 且 1hPa (mbar) 与 1cm 等效水高负荷的贡献相当, 即 1hPa = 1cm EWH, 计算点高度h取点位相对于地面的高度。在计算重力、扰动重力、扰动重力 梯度大气压潮负荷直接影响时, 假设地面高度h处的大气压 $P_h$ 与地面大气压 $P_0$ 存在比例关 系 $(1 - h/44330)^{5225}$ , 即

$$P_h = P_0 (1 - h/44330)^{5225} \tag{3.44}$$

大气变化负荷效应实际计算时,不必非要确定当前计算历元时刻计算点处 $P_h$ ,只需确定计算历元时刻 $P_h$ 大气压相对于参考大气压 $P_h^*$ 的差异 $\Delta P_h = P_h - P_h^*$ 。已知参考历元时刻地面大气压 $P_0^*$ 和计算历元时刻地面大气压 $P_0$ ,即地面大气压变化 $\Delta P_0 = P_0 - P_0^*$ ,由(3.44)

式, 可得计算点处的大气压变化ΔP<sub>h</sub>:

$$\Delta P_h = P_h - P_h^* = P_0 \left( 1 - \frac{h}{44330} \right)^{5225} - P_0^* \left( 1 - \frac{h}{44330} \right)^{5225}$$
$$\approx \Delta P_0 \left( 1 - \frac{h}{44330} \right)^{5225}$$
(3.45)

利用(3.45)式,可直接由地面大气压变化 $\Delta P_0$ 计算地面高度 h 处的大气压变化 $\Delta P_h$ , 而无需直接利用地面点在参考历元时刻的大气压值 $P_0^*$ 。

8.2.5.2 地面大气压变化球谐分析与负荷球谐模型构建

全球地面大气压变化球谐分析流程,与海平面变化球谐分析完全相同,也可采用(3.4) 式,按快速 Fourier 算法计算。先综合各种地面大气压观测数据,构建球坐标系下全球地 面大气压变化格网时间序列(统一移去某一参考历元时刻的地面大气压格网,或某段时 期内地面大气压平均值格网),再分别对每一采样历元时刻地面大气压变化格网按(3.4) 式进行球谐分析,生成全球地面大气压变化负荷球谐系数模型时间序列。地面大气压变 化格网的空间分辨率决定了其负荷球谐模型的最大阶数,负荷球谐系数模型时间序列的 采样历元时刻与地面大气压变化格网时间序列——对应。



图 2.9 全球地面大气压变化球谐分析与负荷球谐模型构建

同理,采用累积迭代球谐分析法,可有效提高全球地面大气压变化负荷球谐系数模型 的逼近水平。

图 2.9 为 ETideLoad4.5 全球地面大气压变化球谐分析程序计算结果,程序输入 1°×1° 全球地面大气压变化球坐标格网时间序列,按(3.4)式,采用迭代累积逼近方法(迭代 残差变化如右下图),构造 180 阶全球地面大气压变化负荷球谐系数模型时间序列(其中, 第一个历元时刻全球地面大气压变化负荷球谐系数模型如左下图)。

全球地面大气压变化负荷球谐系数模型(左下图)的头文件分别是地心引力常数*GM* (×10<sup>14</sup>m<sup>3</sup>/s<sup>2</sup>),地球长半轴a (m),零阶项 $a\Delta C_{00}$  (hPa),相对误差 $\theta$  (%)。 $\theta$ 为最终迭代残差标准差与输入原格网标准差的百分比。

零阶项 $a\Delta C_{00}$ 代表地面大气压变化导致的全球大气总质量的变化,在地球大气质量守恒条件下无意义,实际计算一般忽略零阶项。3个一阶项球谐系数 $(\Delta \bar{C}_{10}^{air}, \Delta \bar{S}_{11}^{air})$ 代表全球地面大气压变化引起的地球质心变化。

类似于海平面变化球谐分析, 地面大气压变化负荷球谐系数模型的最大阶数与地面大 气压变化的实际频谱分布有关, 表 3.3 给出某一历元时刻全球地面大气压变化负荷球谐 分析结果随格网分辨率(最大阶数)变化情况。

| 输入格网      | 是十阶粉 | <b>愛</b> 応 bDっ | 一阶项×10 <sup>-1</sup> °   |                          |                             | 残差相对  |
|-----------|------|----------------|--------------------------|--------------------------|-----------------------------|-------|
| 分辨率       | 取八阴奴 | 令所项TIFa        | $arDeltaar L_{10}^{air}$ | $arDeltaar L_{11}^{air}$ | $\Delta \bar{S}_{11}^{air}$ | 误差%   |
| 2°×2°     | 90   | -1.7539        | 0.55043                  | 3.60270                  | -6.35702                    | 2.707 |
| 1°×1°     | 180  | -1.7614        | 0.54424                  | 3.60695                  | -8.36343                    | 1.215 |
| 0.5°×0.5° | 360  | -1.7620        | 0.54251                  | 3.60748                  | -8.36912                    | 2.043 |

表 2.3 地面大气压变化负荷球谐分析残差随格网分辨率变化情况

表 2.3 指出, 该历元时刻的全球地面大气压变化中长波占优, 采用最大阶数不低于 180 阶的负荷球谐系数模型表示, 基本够用。

#### 8.2.5.3 地面大气压负荷效应球谐综合计算

已知全球地面大气压变化负荷球谐系数模型,就可按(3.8)~(3.20)式的负荷形变 球谐综合算法,计算全球地面或地球外部任意空间点的高程异常、地面重力、扰动重力、 地倾斜(SW 南向/西向)、垂线偏差(SW 南向/西向)、水平位移(EN 东向/北向)、地面 径向(大地高)、地面正(常)高、扰动重力梯度或水平重力梯度的地面大气压变化负荷 (形变)效应,计算固体地球外部空间(包括海洋、航空或卫星高度)的大气压变化负荷 重力位、引力(加速度)或扰动重力梯度摄动。

图 2.10 为 ETideLoad4.5 地面大气压变化负荷形变效应球谐综合程序计算结果,程序

输入计算区域零值格网(用于指定计算点位置和范围,零值表示计算点位于地面),由全 球地面大气压变化负荷球谐系数模型时间序列,选择最大计算阶数180,按(3.8)~(3.20) 式,计算地面大地测量全要素大气压变化负荷形变效应格网时间序列。



图 2.10 地面全要素大气压变化负荷效应格网时间序列计算

由(3.4) 式按快速 Fourier 算法构建地面大气压变化负荷球谐系数模型时,已假设地 面大气压负荷位于半径等于*a*的球面上,用该负荷球谐系数模型计算的大气压变化负荷也 位于该球面上。对于地面或近地空间计算点,为严格保证计算点与地面上负荷流动点的 三维空间位置关系,计算点高度应为计算点相对于地面的高度。

图 2.11 为地球卫星海平面变化负荷的扰动位与重力梯度摄动计算结果。

下面利用欧洲中尺度天气预测中心(ECMWF)全球再分析数据 ERA-40/ERA-Interim 中的 0.5°×0.5°'地面/海面大气压日变化模型,扣除 2018 年平均值后,构造 2018 年 1 月 至 2020 年 12 月 1°×1°全球地面/海面大气压周变化(hPa)球坐标格网时间序列(共 157 个采样历元),采用(3.4)式,按快速 Fourier 算法,构建 180 阶全球大气压变化负荷球 谐系数周变化(hPa)模型时间序列,再按(3.8)~(3.20)式的负荷形变球谐综合算法, 计算中国大陆地区 14 座 CORS 站处地面全要素大气压变化负荷效应。



图 2.11 地球卫星地面大气压变化负荷摄动计算

图 2.12~图 2.15 分别为中国大陆地区 14 座 CORS 站 2018 年 1 月至 2020 年 12 月全 球地面大气压周变化负荷引起的大地水准面周变化时间序列 mm、地面重力周变化时间 序列 μGal、地面大地高周变化时间序列 mm 和扰动重力梯度周变化时间序列 10μE 曲线。



图 2.12 中国大陆地面大气压变化负荷形变(180 阶)-大地水准面变化 mm



图 2.13 中国大陆地面大气压变化负荷形变(180 阶)-地面重力变化 μGal



图 2.14 中国大陆地面大气压变化负荷形变(180 阶)-地面大地高变化 mm



图 2.15 中国大陆地面大气压变化负荷形变(180 阶)-扰动重力梯度变化 10µE

# 8.2.6 陆地水球谐分析与负荷形变场球谐综合计算

## 8.2.6.1 陆地水变化球谐分析与负荷球谐模型构建

全球陆地水变化球谐分析与全球海平面变化球谐分析方法完全相同。图 2.17 为 ETideLoad4.5 全球陆地水变化球谐分析程序计算结果,程序输入 0.25°×0.25°全球陆地水 变化球坐标格网时间序列(其中,第一个历元时刻陆地水变化格网如右中图,海洋置零), 按(3.4)式,采用迭代累积逼近方法(迭代残差变化如右下图),构造 720 阶全球陆地水 变化负荷球谐系数模型时间序列(其中,最后一个历元陆地水变化负荷球谐系数模型如 左下图)。 陆地水变化负荷球谐系数模型(左下图)的头文件分别是地心引力常数GM(×10<sup>14</sup>m <sup>3</sup>/s<sup>2</sup>),地球长半轴a(m),零阶项 $a\Delta C_{00}$ (cm),相对误差 $\theta$ (%)。 $\theta$ 为最终迭代残差标准 差与输入原格网标准差的百分比。球谐系数最大阶数n等于全球地表负荷格网在纬度方向 格网数,本例输入 0.25°×0.25°分辨率格网模型,对应最大阶数n =720。

零阶项αΔC<sub>00</sub>代表全球陆地水变化导致的地球总质量的变化,在地球质量守恒条件下 无意义,实际计算一般忽略零阶项。3个一阶项球谐系数(ΔC<sub>10</sub>,ΔC<sub>11</sub>,ΔS<sub>11</sub>)代表全球陆地 水变化引起的地球质心变化。



图 2.17 全球陆地水变化球谐分析与负荷球谐模型构建

表2.4给出某一历元时刻全球陆地水变化负荷球谐分析结果随格网分辨率(最大阶数) 变化情况。

| 输入格网    | 输入格网<br>分辨率 最大阶数 | 零阶项 cm | 一阶项×10-10                 |                           |                             | 残差相对  |
|---------|------------------|--------|---------------------------|---------------------------|-----------------------------|-------|
| 分辨率     |                  |        | $\Delta ar{C}^{lnd}_{10}$ | $\Delta ar{C}^{lnd}_{11}$ | $\Delta \bar{S}_{11}^{lnd}$ | 误差%   |
| 30'×30' | 360              | 0.3242 | 5.46047                   | 1.49947                   | 0.52091                     | 5.851 |
| 15'×15' | 720              | 0.3207 | 5.32556                   | 1.51216                   | 0.50261                     | 4.291 |
| 9'×9'   | 1200             | 0.3236 | 5.43533                   | 1.50154                   | 0.51493                     | 3.094 |

表 2.4 陆地水变化负荷球谐分析残差随格网分辨率变化情况

表 2.4 指出, 该历元时刻的全球陆地水变化短波成分较为明显, 其负荷球谐系数模型 的适宜最大阶数可选择 720 阶。

### 8.2.6.2 陆地水变化负荷效应球谐综合计算

已知全球陆地水变化负荷球谐系数模型,可按(3.8)~(3.20)式的负荷形变球谐综 合算法,计算全球地面或地球外部任意空间点的高程异常、地面重力、扰动重力、地倾斜 (SW 南向/西向)、垂线偏差(SW 南向/西向)、水平位移(EN 东向/北向)、地面径向(大 地高)、地面正(常)高、扰动重力梯度或水平重力梯度的陆地水变化负荷形变)效应。

图 2.18 为 ETideLoad4.5 陆地水变化负荷形变效应球谐综合程序计算结果,程序输入 计算区域零值格网(用于指定计算点位置和范围,零值表示计算点位于地面),由全球陆 地水变化负荷球谐系数模型,选择最大计算阶数 360,按(3.8)~(3.20)式,计算地面 高程异常、地面重力和地面大地高陆地水变化负荷形变效应。



图 2.18 陆地水变化负荷效应球谐综合计算

由(3.4)式按快速 Fourier 算法构建陆地水变化负荷球谐系数模型时,已假设陆地水 负荷位于半径等于a的球面上,用该负荷球谐系数模型计算的陆地水变化负荷也位于该球 面上。对于地面或近地空间计算点,为严格保证计算点与地面上负荷流动点的三维空间 位置关系,计算点高度应为计算点相对于地面的高度。 这里利用美国宇航局哥达航空中心和国家环境预报中心(NCEP)的全球水文模式 GLDAS 数据,扣除 2018 年平均值后,构造 2018 年 1 月至 2020 年 9 月 15'×15'全球陆地 水周变化(cm)球坐标格网时间序列(共 43 个采样历元),采用(3.4)式,构建 720 阶 陆地水变化负荷球谐系数周变化(m)模型时间序列,再按(3.8)~(3.20)式的球谐综 合算法,计算中国大陆地区 14 座 CORS 站处地面全要素陆地水变化负荷效应。

图 2.19~图 2.22 分别为中国大陆地区 14 座 CORS 站处 2018 年 1 月至 2020 年 9 月全 球陆地水周变化负荷引起的大地水准面周变化时间序列 mm、地面重力周变化时间序列 μGal、地面大地高周变化时间序列 mm 和扰动重力梯度周变化时间序列 10μE 曲线。





图 2.19 中国大陆陆地水变化负荷形变(720 阶)-大地水准面变化 mm

图 2.20 中国大陆土壤水变化负荷形变(720 阶)-地面重力变化 μGal



图 2.21 中国大陆陆地水变化负荷形变(720 阶)-地面大地高变化 mm



图 2.22 中国大陆陆地水变化负荷形变(720 阶)-扰动重力梯度变化 10µE

这里的陆地水,包括了4m以浅土壤水与湿地、植被、冰川雪山水含量,但不包括河 流水和地下水。

8.2.4~8.2.6 节的计算案例显示,全球海平面、大气压或陆地水非潮汐负荷变化引起的 地球质心形变可达 1cm 以上,高精度大地测量需要考虑,而极移的非潮汐负荷效应最大 不到 1μm,完全可以忽略。

由于等效水高球谐展开及其负荷效应球谐展开都是线性的,因此,可以直接将海平面 变化与陆地水变化格网相加后,再进行球谐分析,并按球谐综合方法计算地面或地球外 部总负荷形变效应;也可以将海平面变化负荷球谐系数模型与陆地水变化负荷球谐系数 模型直接相加,零阶项也相加,再按球谐综合方法计算地面或地球外部总负荷形变效应; 分别按 8.2.5、8.2.4 节流程计算海平面变化和陆地水变化负荷形变效应后,再相加得到地 面或地球外部总负荷形变效应。上述三种情况下计算的总负荷形变效应相等。

利用全球海平面、地面大气压、陆地水变化监测数据,确定地表环境负荷引起的(非 潮汐)时变地球重力场,包括重力位系数和地面及地球外部全要素扰动重力场元的非潮 汐负荷效应,可标定重力卫星关键测量载荷的多种参数,有效提升和检核卫星重力场时 变监测的质量、可靠性、精度与时变重力场监测水平。

21