Geophysical models and numerical standards in ETideLoad4.5

ETideLoad4.5 is mainly based on the geophysical models and numerical standards recommended by IERS conventions (2010). You can update them by the program [System configs for the geophysical models and numerical standards]. These geophysical models and numerical standards are stored in file form in the folder C:\ETideLoad4.5 win64en\iers.

7.4.1 The surface atmosphere tidal load spherical harmonic coefficient model file

The 360-degree surface atmosphere tidal load spherical harmonic coefficient model file ECMWF2006.dat is stored in the folder C:\ETideLoad4.5_win64en\iers in FES2004 format, which were constructed by the spherical harmonic analysis programs of ETideLoad4.5 using $0.5^{\circ} \times 0.5^{\circ}$ global harmonic constant grids of four atmosphere tidal constituents, to meet the basic needs of centimeter-level geodesy. The four tidal constituents are respectively the diurnal, semi-diurnal, semi-annual and annual periodic tidal constituents (S_1, S_2, Ss_a, Sa) whose harmonic constant grids come from ECMWF-DCDA2006 of European Centre for Medium-Range Weather Forecasts.

_												
ECA	WF2006. dat⊠											
1	Atmospher	ic tio	le mod	el:	ECMWF-DCDA2006	normalized mod	del up to (360,	360) in hPa				
2	半日/周日	/半年/	年周期	月								
3	Doodson	Darw	n	m	Csin+	Ccos+	Csin-	Ccos-	C+	eps+	C-	eps-
4	164.556	S1	1	0	-0.01055351	0.00555959	-0.01055351	0.00555959	0.01192835	297.7803	0.01192835	297.7803
5	164.556	S1	2	0	-0.00898730	0.02713172	-0.00898730	0.02713172	0.02858149	341.6727	0.02858149	341.6727
6	164.556	S1	3	0	0.02416514	0.01232573	0.02416514	0.01232573	0.02712707	62.9756	0.02712707	62.9756
7	164.556	S1	4	0	0.01971779	-0.01808456	0.01971779	-0.01808456	0.02675523	132.5261	0.02675523	132.5261
8	164.556	S1	5	0	0.00538826	-0.01556217	0.00538826	-0.01556217	0.01646859	160.9021	0.01646859	160.9021
9	164.556	s1	6	0	-0.01896560	-0.00055330	-0.01896560	-0.00055330	0.01897366	268.3289	0.01897366	268.3289
10	164.556	S1	7	0	0.00163224	0.00711629	0.00163224	0.00711629	0.00730108	12.9183	0.00730108	12.9183
11	164.556	S1	8	0	0.00341644	0.00607435	0.00341644	0.00607435	0.00696920	29.3550	0.00696920	29.3550
12	164.556	S1	9	0	-0.00469730	-0.00311697	-0.00469730	-0.00311697	0.00563739	236.4331	0.00563739	236.4331
13	164.556	S1	10	0	0.00442735	-0.01563001	0.00442735	-0.01563001	0.01624496	164.1847	0.01624496	164.1847
14	164.556	S1	11	0	0.00941838	-0.00082619	0.00941838	-0.00082619	0.00945455	95.0132	0.00945455	95.0132
15	164.556	S1	12	0	-0.00454013	0.00688423	-0.00454013	0.00688423	0.00824654	326.5953	0.00824654	326.5953
16	164.556	S1	13	0	-0.01227672	0.00310149	-0.01227672	0.00310149	0.01266243	284.1781	0.01266243	284.1781
17	164.556	S1	14	0	0.00203678	0.00166923	0.00203678	0.00166923	0.00263340	50.6638	0.00263340	50.6638
18	164.556	S1	15	0	0.00253994	0.00381849	0.00253994	0.00381849	0.00458608	33.6306	0.00458608	33.6306
19	164.556	S1	16	0	0.00613602	-0.00041704	0.00613602	-0.00041704	0.00615017	93.8882	0.00615017	93.8882
20	164.556	S1	17	0	-0.00113104	-0.00413462	-0.00113104	-0.00413462	0.00428652	195.2992	0.00428652	195.2992
21	164.556	S1	18	0	-0.00311700	0.00136741	-0.00311700	0.00136741	0.00340375	293.6868	0.00340375	293.6868
22	164.556	S1	19	0	-0.00217138	0.00053937	-0.00217138	0.00053937	0.00223737	283.9498	0.00223737	283.9498
23	164.556	S1	20	0	-0.00017645	0.00369644	-0.00017645	0.00369644	0.00370065	357.2671	0.00370065	357.2671
24	164.556	S1	21	0	0.00068441	-0.00165216	0.00068441	-0.00165216	0.00178831	157.4980	0.00178831	157.4980
25	164.556	S1	22	0	0.00100221	-0.00214635	0.00100221	-0.00214635	0.00236881	154.9703	0.00236881	154.9703
26	164.556	S1	23	0	0.00461395	-0.00179653	0.00461395	-0.00179653	0.00495136	111.2744	0.00495136	111.2744
27	164.556	S1	24	0	-0.00143873	0.00014453	-0.00143873	0.00014453	0.00144597	275.7366	0.00144597	275.7366
28	164.556	S1	25	0	-0.00083151	-0.00001238	-0.00083151	-0.00001238	0.00083160	269.1470	0.00083160	269.1470
29	164.556	S1	26	0	-0.00272792	-0.00095240	-0.00272792	-0.00095240	0.00288940	250.7543	0.00288940	250.7543
30	164.556	S1	27	0	-0.00183890	0.00217563	-0.00183890	0.00217563	0.00284868	319.7946	0.00284868	319.7946

The surface atmospherical pressure, tidal constituent harmonic constants and tidal load spherical harmonic coefficients are all in unit of hPa or mbar.

7.4.2 The ocean tidal load spherical harmonic coefficient model file

The 100-degree ocean tidal load spherical harmonic coefficient model file FES2004S1.dat is stored in the folder C:\ETideLoad4.5_win64en\iers in FES2004 format. The relationship expression between the ocean tidal load normalized spherical harmonic coefficients and the geopotential coefficients is as the formula (6.15) in the IERS conventions (2010).

In order to meet the basic needs of satellite, coastal zone and ocean gravity gradient

data processing, we adopted AVISO FES2014b global tidal height harmonic constant grid models to construct the 720-degree ocean tidal height spherical harmonic coefficient model file FES2014b720cs.dat in FES2004 format by the spherical harmonic analysis programs of ETideLoad4.5.

ECM	WF2006. dat⊠ 📙	FES200	4S1. dat⊠						
1	Ocean tide mo	odel:	FES2004 norma	alized mode	l (fev. 2004)	up to (1	100,100) in cm		
2	(long period	from	FES2002 up to	(50,50) +	equilibrium	Om1/Om2,	atmospheric tide	NOT inc	luded)
3	Doodson Darw	n	m Csin+	Ccos+	Csin-	Ccos-	C+ eps+	C-	eps-
4	55.565 Om1	2	0 -0.540594	0.000000	0.000000	0.000000	0.5406 270.000	0.0000	0.000
5	55.575 Om2	2	0 -0.005218	0.000000	0.000000	0.000000	0.0052 270.000	0.0000	0.000
6	56.554 Sa	1	0 0.017233	0.000013	0.000000	0.000000	0.0172 89.957	0.0000	0.000
7	56.554 Sa	2	0 -0.046604	-0.000903	0.000000	0.000000	0.0466 268.890	0.0000	0.000
8	56.554 Sa	3	0 -0.000889	0.000049	0.000000	0.000000	0.0009 273.155	0.0000	0.000
9	56.554 Sa	4	0 0.012069	-0.000413	0.000000	0.000000	0.0121 91.960	0.0000	0.000
10	56.554 Sa	5	0 -0.009780		0.000000	0.000000	0.0098 267.535	0.0000	0.000
11	56.554 Sa	6	0 0.006895	0.000043	0.000000	0.000000	0.0069 89.643	0.0000	0.000
12	56.554 Sa	7	0 -0.010515	-0.000287	0.000000	0.000000	0.0105 268.437	0.0000	0.000
13	56.554 Sa	8	0 0.002067	-0.000011	0.000000	0.000000	0.0021 90.305	0.0000	0.000
14	56.554 Sa	9	0 -0.004236	-0.000110	0.000000	0.000000	0.0042 268.512	0.0000	0.000
15	56.554 Sa	10	0 -0.001781	-0.000085	0.000000	0.000000	0.0018 267.268		0.000
16	56.554 Sa	11	0 -0.001372		0.000000	0.000000	0.0014 267.163		0.000
17	56.554 Sa	12	0 -0.004081		0.000000	0.000000	0.0041 269.326		0.000
18	56.554 Sa	13	0 -0.000116	-0.000041	0.000000	0.000000	0.0001 250.534		0.000
19	56.554 Sa	14	0 -0.003043	-0.000007	0.000000	0.000000	0.0030 269.868		0.000
20	56.554 Sa	15	0 0.001109	-0.000028	0.000000	0.000000	0.0011 91.446	0.0000	0.000
21	56.554 Sa	16	0 -0.002596		0.000000	0.000000	0.0026 269.250		0.000
22	56.554 Sa	17	0 -0.000674	0.000022	0.000000	0.000000	0.0007 271.870	0.0000	0.000
23	56.554 Sa	18	0 0.000546	0.000006	0.000000	0.000000	0.0005 89.370		0.000
24	56.554 Sa	19	0 -0.000024	0.000023	0.000000	0.000000	0.0000 313.781		0.000
25	56.554 Sa	20	0 0.000867	0.000014	0.000000	0.000000	0.0009 89.075	0.0000	0.000

FES2014n720cs.dat includes spherical harmonic coefficients of the 36 tidal constituents (Ω 1, Ω 2; 2N2, Eps2, J1, K1, K2, L2, La2, M2, M3, M4, M6, M8, Mf, MKS2, Mm, MN4, MS4, MSf, MSqm, Mtm, Mu2, N2, N4, Nu2, O1, P1, Q1, R2, S1, S2, S4, Sa, Ssa, T2), in which the spherical harmonic coefficients of the two equilibrium tidal constituents (Ω 1, Ω 2) come from FES2004S1.dat.

The ocean tidal height, harmonic constant of the tidal constituent and tidal load spherical harmonic coefficients are all in unit of cm.

7.4.3 The Earth's Load Love number file

The Earth's load Love numbers also called the load deformation coefficients (LDC) can be calculated using the spherically symmetric non-rotating elastic Earth model REF6371. The load Love numbers in ETideLoad4.5 come from a Regional EIAstic Rebound calculator (REAR1.0, 2015.11). The load Love number file Love_load_cm.dat were stored in the folder C:\ETideLoad4.5_win64en\iers, which includes the load Love numbers of the radial displacement, horizontal displacement and geopotential (h'_n, l'_n, k'_n) , $n = 0, \cdots$,32768 from 0 to 32768 degree, $k'_0 = k'_1 = 0$, as shown in the figure.

In order to suppress the high-degree oscillations of the load Green's function, the load Green's function is calculated to 54000 degrees in ETideLoad, and the load Love numbers exceeding 32768 degrees (n>32768) are calculated with the following asymptotic formulas:

$$h'_n = -6.209114$$
, $l'_n = 1.890061/n$, $k'_n = -2.682697/n$.

```
Love_load_cm. dat
   The load Love numbers from the REAR package are attached. There are no
    more of these oscillations at high degree, and they go up to degree 32768.
    November 20, 2015, Jean-Paul
   CM: center of mass reference frame
n h' (vert) l' (ho
                                                       k' (potent)
                                      (horiz)
       0 0.000000000D+00 0.00000000D+00 0.00000000D+00
1 -0.0287112988D+01 0.1045044062D+00 0.000000000D+00
        2 -0.9945870591D+00
                                0.2411251588D-01 -0.3057703360D+00
       3 -0.1054653021D+01 0.7085493677D-01 -0.1962722363D+00
4 -0.1057783895D+01 0.5958723183D-01 -0.1337905897D+00
        5 -0.1091185915D+01
                                0.4702627503D-01 -0.1047617976D+00
        6 -0.1149253656D+01 0.3940811757D-01 -0.9034958051D-01
7 -0.1218363201D+01 0.3499400649D-01 -0.8205733906D-01
        8 -0.1290473661D+01
                                0.3225123202D-01
                                                   -0.7652348967D-01
      9 -0.1361847865D+01 0.3038562458D-01 -0.7239287690D-01 10 -0.1430981761D+01 0.2902258995D-01 -0.6907768441D-01
       13 -0.1621715593D+01
                                0.2650554043D-01 -0.6175536119D-01
       14 -0.1679770379D+01
                                0.2596800569D-01
                                                   -0.5983856019D-01
       15 -0.1735198310D+01 0.2551661917D-01 -0.5808965155D-01
      16 -0.1788088250D+01
                                0.2512667367D-01 -0.5647488828D-01
       17 -0.1838448069D+01 0.2478452380D-01 -0.5496610314D-01
       18 -0.1886440474D+01
                                0.2447083426D-01 -0.5354901315D-01
       19 -0.1932084480D+01
                                0.2417919471D-01
                                                   -0.5220607051D-01
       20 -0.1975465902D+01
                                0.2389862142D-01
                                                   -0.5092726303D-01
       21 -0.2016677975D+01
                                0.2362510597D-01
                                                   -0.4970406011D-01
       22 -0.2055800328D+01
                                0.2335504487D-01
                                                    -0.4853059813D-01
       23
           -0.2092911079D+01
                                0.2308664225D-01
                                                    -0.4740132374D-01
            -0.2128152865D+01
                                0.2281672671D-01
                                                    -0.4631386954D-01
```

7.4.4 The IERS Earth orientation parameter time series file

The IERS Earth orientation parameters (EOP) time series file IERSeopc04.dat (ITRF2008) were stored in the folder C:\ETideLoad4.5_win64en\iers. You can update the EOP time series from the IERS website. For future time epochs, the forecast EOP products can be employed. Considering the non-tidal nature of the polar shift, the forecast time should be controlled within half a year.

CMWF200	6. dat 🗵 📙		. dat 🖾 🛗 IERS	eopc04. dat🗵										
	INTERNATIONAL EARTH ROTATION AND REFERENCE SYSTEMS SERVICE													
	EARTH ORIENTATION PARAMETERS													
			EOP (IERS) 14 CO	1									
***	FORMAT(3(I4), I7, 2(Fi1.6), 2(Fi1.6), 2(Fi1.6), 2(Fi1.7), 2(Fi2.6))													

	Date	MJD	×	У	UT1-UTC	LOD	dX	dY	x Err	y Err	UT1-UTC Err	LOD Err	dX Err	dY Err
			"	-	S	S		"		- "	s	S		
	(Oh UTC)												
200	1 1 1	51910	-0.073506	0.398095	0.0931626	0.0006630	0.000150	-0.000109	0.000061	0.000048	0.0000107	0.0000131	0.000028	0.00003
200	1 1 2	51911	-0.072651	0.399806	0.0924546	0.0007596	0.000141	-0.000092	0.000061	0.000048	0.0000070	0.0000131	0.000028	0.00003
200	1 1 3	51912	-0.071557	0.401864	0.0916573	0.0008515	0.000132	-0.000074	0.000061	0.000047	0.0000034	0.0000131	0.000028	0.00003
200	1 1 4	51913	-0.071024	0.403840	0.0907195	0.0008969	0.000149	-0.000084	0.000061	0.000047	0.0000084	0.0000132	0.000029	0.00003
200	1 1 5	51914	-0.070723	0.405333	0.0897667	0.0008872	0.000174	-0.000103	0.000060	0.000047	0.0000163	0.0000132	0.000029	0.00003
200	1 1 6	51915	-0.070378	0.406725	0.0889292	0.0008068	0.000199	-0.000122	0.000060	0.000047	0.0000221	0.0000132	0.000029	0.00003
200	1 1 7	51916	-0.070068	0.408041	0.0882375	0.0006463	0.000224	-0.000141	0.000060	0.000047	0.0000163	0.0000132	0.000029	0.00003
200	1 1 8	51917	-0.070205	0.409479	0.0876861	0.0004933	0.000250	-0.000160	0.000060	0.000047	0.0000104	0.0000132	0.000029	0.00003
200	1 1 9	51918	-0.070220	0.410814	0.0872445	0.0004441	0.000275	-0.000179	0.000060	0.000046	0.0000046	0.0000132	0.000029	0.00003
200	1 1 10	51919	-0.069861	0.412336	0.0868199	0.0004186	0.000270	-0.000158	0.000060	0.000046	0.0000043	0.0000133	0.000029	0.00003
200	1 1 11	51920	-0.069330	0.414004	0.0864003	0.0004447	0.000155	-0.000180	0.000059	0.000046	0.0000039	0.0000133	0.000029	0.00003
200	1 1 12	51921	-0.068456	0.416120	0.0858451	0.0005855	0.000106	-0.000203	0.000059	0.000046	0.0000088	0.0000133	0.000028	0.00003
200	1 1 13	51922	-0.067463	0.418251	0.0851161	0.0007422	0.000095	-0.000222	0.000059	0.000046	0.0000138	0.0000133	0.000028	0.00003
200	1 1 14	51923	-0.066479	0.420226	0.0842390	0.0008823	0.000084	-0.000241	0.000059	0.000046	0.0000112	0.0000134	0.000028	0.00002
200	1 1 15	51924	-0.065406	0.422044	0.0833100	0.0009404	0.000072	-0.000259	0.000059	0.000046	0.0000086	0.0000134	0.000027	0.00002
200	1 1 16	51925	-0.063999	0.423541	0.0824180	0.0009155	0.000061	-0.000278	0.000059	0.000046	0.0000060	0.0000134	0.000027	0.00002
200				0.425076	0.0816384	0.0007815	0.000050	-0.000297	0.000059	0.000046		0.0000135	0.000027	0.00002
200	1 1 18	51927	-0.061434	0.426438	0.0809369	0.0005717	0.000307	-0.000078	0.000060	0.000046	0.0000060	0.0000135	0.000026	0.00002
200			-0.060301	0.428009	0.0803992	0.0004021	0.000387	-0.000005	0.000060	0.000046			0.000026	0.00002
200				0.429380	0.0801026	0.0002618	0.000335	-0.000045	0.000060	0.000046			0.000025	0.00002
200			-0.058122	0.430418	0.0799970	0.0000786	0.000284	-0.000085	0.000060	0.000046		0.0000136	0.000025	0.00002
200			-0.056745	0.431190	0.0799904	-0.0000387	0.000232	-0.000124	0.000060	0.000047		0.0000136	0.000024	0.00002
200			-0.055378	0.432515	0.0800354	-0.0000794	0.000180	-0.000164	0.000061	0.000047		0.0000137	0.000024	0.00002
200				0.434299	0.0801054	-0.0000531			0.000061	0.000047		0.0000137	0.000024	0.00002
200			-0.052227	0.436048	0.0801105	0.0000481	0.000130	-0.000240	0.000061	0.000047		0.0000137	0.000023	0.00002
200			-0.050435	0.438026	0.0799589	0.0001715	0.000101	-0.000252	0.000062	0.000048		0.0000137	0.000023	0.00002
200			-0.049130	0.439812	0.0796787	0.0002940	0.000094	-0.000242	0.000062	0.000048		0.0000137	0.000022	0.00002
200				0.441607	0.0792944	0.0004503		-0.000232	0.000062	0.000048			0.000022	0.00001
200			-0.045537	0.443509	0.0788172	0.0005621			0.000063	0.000048		0.0000138	0.000021	0.00001
200				0.444974	0.0782782	0.0006019	0.000072	-0.000211	0.000063	0.000048		0.0000138	0.000021	0.00001
200			-0.042067	0.446396	0.0777060	0.0005437	0.000254	-0.000159	0.000063	0.000049		0.0000138	0.000021	0.00001
200			-0.040683	0.447325	0.0772066	0.0004689	0.000298	-0.000141	0.000064	0.000049		0.0000138	0.000022	0.00002
200	122	51942	-0.039012	0.448060	0.0767917	0.0003692	0.000290	-0.000134	0.000064	0.000049	0.0000143	0.0000138	0.000022	0.00002

7.4.5 The Earth's mass centric variation time series file

The Earth's mass centric variation time series file Monthly geocenter MK.txt (ITRF2014)

from Center for Space Research in University of Texas in USA (UT/CSR) from LAGEOS-1/2, Stella, Starlette, AJISAI, BEC and LARES Satellite Laser Ranging (SLR) measured. For future time epochs, the forecast products can be employed, but the forecast time should be controlled within three months.

```
Honthly_geocenter_MK. txt ■
          Description for Geocenter variations from SLF
         Column 1: Year equivalent of first day of month Column 2-4: Lower Pass Filtered X,Y,Z (mm)
         Column 2-4: Lower Pass Filtered X,Y,Z (mm)
Column 5-7: SLR estimated X,Y,Z (mm)
Column 8-10: Sigma for X,Y,Z (mm)
Usage: (C11,S11,C10) = (X,Y,Z)/sqrt(3.0)/6378136000.0
Remark: Monthly station range bias and zenith delay adjusted
FORMAT(F9.1,F12.4,6F9.3,3F7.2)
1993.0000 5.077 -2.796 -1.605 6.477 1.797 -6.3
         1993.0849
                           4.639
                                      -3.300
                                                   -1.244
                                                                 1.922
5.188
                                                                            -2.697
                                                                                         2.723
0.714
                                                                                                     0.10
                                                                                                              0.10
0.10
                                                                                                                        0.29
0.26
                                                                            -4.895
                                                                                                     0.09
                                      -3.384
                                                   -1.106
         1993.2464
                           2.562
                                      -2.788
                                                   -1.336
                                                                 1.450
                                                                            -6.692
                                                                                        -3.054
                                                                                                     0.11
                                                                                                               0.12
                                                                                                                        0.26
                                       -1.521
                                                                 2.230
                           1.198
                                                   -1.911
                                                                                                                         0.25
         1993.4134
                          -0.126
                                        0.137
                                                   -2.656
                                                                -0.187
                                                                             3.425
                                                                                          0.901
                                                                                                     0.10
                                                                                                               0.10
                                                                                                                         0.25
         1993.5804
                          -1.920
                                        2.913
                                                   -3.678
                                                                -0.832
                                                                              3.154
                                                                                         -1.596
                                                                                                     0.09
                                                                                                               0.08
                                                                                                                        0.21
                           -2.178
                                        3.347
                                                                              3.621
                                                   -3.037
          1993.7474
                          -2.004
                                        2.991
                                                                -4.289
                                                                              2.258
                                                                                        -4.667
                                                                                                     0.08
                                                                                                               0.07
                                                                                                                         0.21
          1993.8323
                           -1.466
                                                                 2.444
                                                                              3.179
                                                                                                               0.09
         1993.9144
                          -0.645
                                        0.449
                                                   -1.614
                                                                 0.122
                                                                              1.610
                                                                                          1.299
                                                                                                     0.09
                                                                                                               0.09
                                                                                                                         0.22
          1994.0000
                           0.397
                                       -1.237
                                                   -1.600
                                                                -0.654
                                                                            -4.129
                                                                                         -7.715
                                                                                                               0.09
                                                                                                                         0.19
                                                                            -5.735
          1994.0849
                           1.612
                                       -2.802
                                                   -2.625
                                                                 1.034
                                                                                          1.035
                                                                                                     0.09
                                                                                                               0.09
          1994.1615
                           2.931
                                       -3.928
                                                   -4.840
                                                                 2.030
                                                                            -1.856
                                                                                         -5.718
                                                                                                               0.08
                                                                                                                         0.21
                                                                 3.979
                           4.228
                                                                                                     0.09
          1994.2464
                                       -4.321
                                                    -7.998
                                                                            -2.408
                                                                                         -5.872
                                                                                                               0.08
                                                                                                                         0.20
          1994.3285
                           5.313
                                       -3.784
                                                  -11.461
                                                                 8.049
                                                                            -1.572
                                                                                       -11.862
                                                                                                     0.10
                                                                                                               0.09
                                                                                                                         0.20
                                       -2.309
          1994.4134
                           5.965
                                                  -14.360
                                                                 5.917
                                                                            -3.452
                                                                                       -22.300
                                                                                                     0.09
                                                                                                               0.10
                                                                                                                         0.24
          1994.4956
                            6.014
                                       -0.151
                                                  -15.860
                                                                 2.151
                                                                             -2.927
                                                                                        -10.555
                                                                                                                         0.25
```

7.4.6 Ocean tidal constituent harmonic constant grid model files

- (1) The ocean tidal height model is composed of multiple grid models of all tidal constituent harmonic constants. Each tidal constituent harmonic constants are stored as a vector grid file.
- (2) All the tidal constituent grid files from an ocean tidal height model should be in a folder with the same grid specifications.
- (3) The 10 vector grid files in the folder C:\ ETideLoad4.5_win64en\OceanTide represent the ocean tide model GOT4.8 with 10 global grid models of 10 tidal constituent harmonic constants.
- (4) The type of the tidal constituent is identified by the seventh attribute (Doodson constant) in its grid file header. These files can be named at will.

1	0.000000	360.000	0000 -90.	.000000	90.000000	0.50000	0000 0.50	0000000	255555				
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

(5) The ocean tidal height model can be global or regional. The ocean tidal height and the harmonic constants are all in unit of cm.

7.4.7 The JPL Planetary Ephemeris DE440 file

The JPL Planetary Ephemeris DE440 file JEPH.440 (from 1850 to 2201) was stored in the folder C:\ETideLoad4.5 win64en\iers.

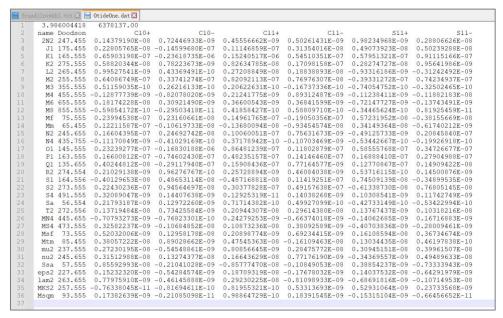
7.4.8 The Love number correction file for frequency dependence

The correction file frqadjlovekhl.txt for frequency dependence was generated from Table 6.5a, 6.5b, 6.5c, 7.2, 7.3a and 7.3b in IERS conventions (2010) can be employed to calculate the Love number corrections for frequency dependence to obtain the high-accuracy solid tidal effects on all-element geodetic variations.

<u>⊨</u> f	frqa	djlovekhl. tz	kt 🗵										
1	-	doodson °	/hr	1 1'	F D	Ω	(δR	δI)	[2~	72,e-5;73	~120,e-	4] H(e-	·5m)
2	2	245655	28.	43973	- 1	0	2	0	2	2	0	12099	
3	3	255555	28.	98410	0	0	2	0	2	2	0	63192	
4		125755	12.	85429	2	0	2	0	2	-29	3	-664	
5	5	127555	12.	92714	0	0	2	2	2	-30	3	-802	
6	5	135645	13.	39645	1	0	2	0	1	-45	5	-947	
7	7	135655	13.	39866	1	0	2	0	2	-46	5	-5020	
8		137455	13.	47151	-1	0	2	2	2	-49	5	-954	
9)	145545	13.	94083	0	0	2	0	1	-82	7	-4946	
10)	145555	13.	94303	0	0	2	0	2	-83	7	-26221	
11		147555	14.	.02517	0	0	0	2	0	-91	9	343	
12	2	153655	14.	41456	1	0	2	-2	2	-168	14	194	
13	3	155445	14.	48520	-1	0	2	0	1	-193	16	137	
14		155455	14.	48741	-1	0	2	0	2	-194	16	741	
15	5	155655	14.	49669	1	0	0	0	0	-197	16	2062	
16	5	155665	14.	49890	1	0	0	0	1	-198	16	414	
17	7	157455	14.	56955	-1	0	0	2	0	-231	18	394	
18	3	157465	14.	57176	-1	0	0	2	1	-233	18	87	

7.4.9 The Desai ocean pole tide coefficient file

The ocean pole tide is generated by the centrifugal effect of polar motion on the oceans. Desai (2002) present a self-consistent equilibrium model of the ocean pole tide. This model accounts for continental boundaries, mass conservation over the oceans, self-gravitation and load of the ocean floor. Using this model, the ocean pole tide produces the following perturbations to the normalized geopotential coefficients, as a function of the polar shift parameters (m_1, m_2) .


ECM	/F2006. d	lat 🗵 🧮	FES2004S1. dat 🗵 📙 IERSeop	oc04. dat 🗵 📙 GCN_L1_L2_30d_	CF-CM. txt🗵 🔒 desaiscopole	coef. txt🛛
1	n	m	Anm(Real)	Bnm(Real)	Anm(Imaginary)	Bnm(Imaginary)
2	1	0	1.8736759805448e-02	0.0000000000000e+00	2.9688884960424e-02	0.000000000000e+00
3	1	1	2.8258913146935e-02	2.1774643075236e-02	2.3898264393684e-02	5.6771602236635e-02
4	2	0	-3.9555099024374e-03	0.0000000000000e+00	6.8390464271953e-04	0.000000000000e+00
5	2	1	-2.4325330521304e-01	5.4680741193318e-03	5.4680741193318e-03	-1.9252111185300e-01
6	2	2	1.9102047023374e-02	1.1158297399424e-02	-1.5123770169928e-02	-2.4857839911518e-04
7	3	0	-2.0869478248378e-02	0.0000000000000e+00	-1.0775272844125e-02	0.0000000000000e+00
8	3	1	3.0809252024501e-02	7.4552838003486e-03	5.5937937407386e-03	6.6496877724041e-02
9	3	2	2.3295703062692e-02	3.7984356463618e-02	-2.1678456242839e-03	1.1232359168959e-02
10	3	3	7.9776020803848e-03	1.2502542787182e-02	-2.2341399966187e-02	-2.2979590161975e-02
11	4	0	-1.0612668622736e-02	0.0000000000000e+00	-1.5569196271270e-02	0.0000000000000e+00
12	4	1	1.3606306893006e-04	2.2051992576636e-03	2.0130037501025e-03	1.6323514549038e-02
13	4	2	1.1139374002795e-02	1.7031544962514e-02	-7.9621127289889e-03	-8.4440848505132e-04
14	4	3	-1.6100794768731e-02	1.4681986705593e-02	9.5178410813713e-03	-2.1017136590507e-02
15	4	4	4.3132021252707e-03	-4.6836271624465e-03	-2.9309550249205e-03	1.3175690530653e-02
16	5	0	7.0731357453056e-03	0.0000000000000e+00	-1.8023029843730e-03	0.000000000000e+00
17	5	1	2.5644907587134e-03	-1.0076857169607e-02	-9.6273922883022e-03	-1.1684145258283e-02
18	5	2	-7.9615162895536e-03	2.0820461332209e-03	-3.0274671879191e-03	-1.0475800274156e-02
19	5	3	-1.1818705609675e-02	1.2063416189422e-02	-1.6584597520384e-02	-2.8253596831795e-02
20	5	4	9.2731253376468e-03	1.8353138561674e-02	-1.0870088052722e-02	4.7120935900411e-03
21	5	5	1.4460712839068e-02	-8.5510747244577e-03	8.9167437380844e-04	1.6048852898081e-02
22	6	0	7.4439256593180e-03	0.0000000000000e+00	-1.0670986469176e-03	0.000000000000e+00
23	6	1	1.8261459881891e-02	-3.7775168887123e-03	-3.6768761254667e-03	-1.4329108864964e-03
24	6	2	-8.4568708595335e-03	2.5640802224787e-03	8.0976103423504e-03	-6.3983905389798e-03
25	6	3	-1.5355186088842e-02	1.8642889355748e-03	-9.6956523287846e-03	-2.2353328754893e-02

The Desai calculating formula of the ocean pole tide adopts the formula (6.23) in the IERS conventions (2010), and the 360-degree ocean polar tide coefficient file desaiscopolecoef.txt were stored in the folder C:\ETideLoad4.5 win64en\iers.

7.4.10 First-degree ocean tidal load spherical harmonic coefficient file

The file OtideOne.dat could be employed to forecast of ocean tidal load effects on Earth's mass centric variations or all-element geodetic variation effects due to Earth's mass centric variation of ocean tide.

The file is output by the function [Spherical harmonic analysis on ocean tidal constituent harmonic constants]. The following figure is the first-degree ocean tidal load spherical harmonic coefficient file generated by the spherical harmonic analysis of 34 tidal constituent harmonic constants in the FES2014b ocean tide model.

The file header inludes the geocentric gravitational constant GM ($\times 10^{14} \text{m}^3/\text{s}^2$) and equatorial radius a (m) of the Earth. The record (starting from the third row) includes the tidal constituent's name, Doodson constant, the degree-1 order-0 spherical harmonic coefficient C_{10} + from in-phase amplitude, that C_{10} - from out-of-phase amplitude, and the degree-1 order-1 spherical harmonic coefficient C_{11} + from in-phase amplitude, and the degree-1 order-1 spherical harmonic coefficient S_{11} + from in-phase amplitude, that S_{11} - from out-of-phase amplitude.

7.4.11 First-degree atmosphere tidal load spherical harmonic coefficient file

The file AirtdOne.dat could be employed to forecast of surface atmosphere tidal load effects on Earth's mass centric variations or all-element geodetic variation effects due to Earth's mass centric variation of surface atmosphere tide.

The file is output by the function [Spherical harmonic analysis on atmosphere tidal constituent harmonic constants]. The following figure is the first-degree atmosphere tidal load spherical harmonic coefficient file generated by the spherical harmonic analysis of 4 tidal constituent harmonic constants in the ECMWF-DCDA2006 atmosphere tide model.

The file header inludes the geocentric gravitational constant GM ($\times 10^{14} \text{m}^3/\text{s}^2$) and equatorial radius a (m) of the Earth. The record (starting from the third row) includes the tidal constituent's name, Doodson constant, the degree-1 order-0 spherical harmonic coefficient C_{10} + from in-phase amplitude, that C_{10} - from out-of-phase amplitude, and the degree-1 order-1 spherical harmonic coefficient C_{11} + from in-phase amplitude, and the degree-1 order-1 spherical harmonic coefficient S_{11} + from in-phase amplitude, that S_{11} - from out-of-phase amplitude.