

Process demo of all-element modelling on gravity field using SRBFs

Various heterogeneous observations can be directly employed to model all-element gravity field without reduction, continuation and griding. Has the strong ability in detection of gross errors, measurement of external accuracy indexes and control of computational performance. Synchronously realize the all-element analytical modeling on gravity field in whole space on or outside geoid.

The analytical relationships between gravity field elements are strict, and the approach performance has nothing to do with observation errors.

Only six steps universal in global land-sea area. Everyone will !

Process demo of full element modelling on gravity field using SRBFs in orthometric height system

> Since the observed geoidal height by GNSSleveling is essentially the height anomaly on the geoid in orthometric height system, the height at GNSS-leveling sites must be the geoidal height rather than the ellipsoidal height of GNSS-points.

Simple process demo of All-element modelling on gravity filed using SRBFs in orthometric height system

The observed gravity disturbances (mGal) and observed GNSS-levelling geoidal heights (m)

Precise Approach of Earth Gravity Field and Geoid PAGravf4.5

Chinese Academy of Surveying & Mapping October 2024, Beijing, China

				-			
			' ©	V			· -
	۲	۲	۲	۲	۲		
	۲	۲	۲	۲	۲	۲	
	۲		۲	۲	۲	۲	1
	۲	۲	0	0	۲	۲	
	\odot	۲	\odot	۲	۲	۲	-
	0	۲	۲	۲	0	۲	
	\odot	۲	۲	•	0	۲	4
0	\odot	۲	۲	0	0	۲	۲
0	0	۲	۲	\odot	۲	۲	۲
	۲	۲	۲	\odot	۲	۲	
	Θ	\odot	۲	0	0		
	0						1
	\odot						
_	1	I					
103	2.8*		103"		103.2"		103.4
	-33		-32		-31		_

The distribution of gravity points, 2~180th degree model geoidal height and ellipsoidal height of the terrain surface

left for the second second second text is the section of global geopotential model and its spectral character analysis left and the second sec

(1) Remove reference model value from all the observations and then construct the heterogeneous observation residual file.

Calculation of gravity field elements from global geopotential model	Ealculati terrain (on of model value for residual complete Bouguer) effects	Global geo model Ca	potential coef culator	icient	Calculation character of
Spen global geopotential coefficient mod	el file	Save computation process as	\$			
Select calculation file format	**	The window below only shows	the geopotential coef	icients data w	ith no more	than 2000 rows in it
Discrete calculation points file	>>	Open space calculation points f	ile C:/PAGravf4.5_wir	164en/example	s/Gravfmd	Ilexercise/SRBFappi
Open space calculation points file	**	Look at the file information in th	e window below and	set the discret	e point file	format
Set input point file format	>>	Save the results as C:/PAGravf4	4.5_win64en/example	s/Gravfmdlex	ercise/SRB	Fapprgeoidexercise
Number of rows of file header 1		SGNSSIgeoidh_GM540.txt.	ation point file appen	de one or mor		of model values of a
Column ordinal number of ellipsoidal	ele	ments, and keeps 4 significant f	igures.			Si model values of a
height in the record	>>	The parameter settings have be	een entered into the s	ystem!		
Select elements to be calculated	**	Click the [Start Computation] co	ontrol button, or the [S	Start Computat	ion] tool bu	Itton
✓ height anomaly (m)	>>	Computation start time: 2023-0)3-21 09:46:33	can open me	output me t	
gravity anomaly (mGal)	>>	Complete the calculation of the	model value of (resid	ual) gravity fie	d element!	
gravity disturbance (mGal)	>>	Computation end time: 2023-03	3-21 09:47:17			
vertical deflection (", SW)		😫 Save the results as 🛛 🍯	Import setting parar	neters		
disturbing gravity gradient (E, radial)						
tangential gravity gradient (E, NW)	ID	lon(degree decimal) lat el 1 102.4424 24.4717 1973	llpH(m) ksi(m) 3.56 -32.7581	-32,6525		
Laplace operator (E)		2 102.5467 24.4580 1659	9.69 -32.9577	-32.5340		
Minimum degree 2	-	3 102.6324 24.4582 2120	0.99 - 32.5792	-32.4433		
Maximum degree 540		5 102.4208 24.5663 1991	1.56 -32.6038	-32.5734		
3 0.0		6 102.5286 24.5627 1937	7.23 -32.5636	-32.4239		
		7 102.6344 24.5656 2193 8 102.7258 24.5819 2304	3.72 -32.3822 4.57 -32.2197	-32.3128	rntSRBFgeoidh	30s0. chs 🗵 🔚 obsresiduals0. txt 🗈
S Extract elements to be plot	ot↓	9 102.8326 24.5755 1978	8.11 -32.5408	-32.0934		1 102 39
100 51 100 51 100 51 102 102	or 100 4*	The ellipseidal he	ight hore at		3	2 102.39
25.6	25.6		ight here at		4	3 102.39
	• • •	GNSS-leveling po	bint is the		5	4 102.39
25.4	25.4°	observed or mo	del geoidal		6	5 102.39
	••••	height, not the	e observed		8	6 102.30 7 102.39
25.2		ellinsoidal height			9	8 102 39
25	- 25	empsoidal neight.			10	9 102.39
	•••	4			1221	1 102 //
24.8	- 24.8`				4222	2 102.54
	• 1				4223	3 102.63
24.6	24.6				4224	4 102.72
24.4					4225	5 102.42
102.4" 102.6" 102.8" 103" 103	.2* 103.4*				4226	6 102.52
-32.8 -32.6 -32.4 -32.2 -32 -31.8 -31.6 -31.4	-31.2				4227	
					4228	8 102.72 0 102 0
The model geoidal height (m) at 📃	gravity anom	laiy (mGal)		4230	
Whethe GNSS-levelling boin	ts be set is e	equal, the program calculates the	e contribution of the c	legree n geopo	4231	11 102.42
which can be employed to analyze and evalua	te the spectral	and space properties of the geo	opotential coefficient r	nodel.	4232	12 102.52

(2) Detect the gross errors of the observations and then reconstruct the heterogeneous observation residual file. Follow example

	Open the discrete heterogeneous residual observations file							
numbe	er of rows of file heade	er 1	•					
column ordinal number of ellipsoidal 6								
colum	n ordinal number of w	eight 7	•					
	Select SRBF	radial multipole kernel	~					
	Order m	5	•					
	Minimum degree	360						
	Maximum degree	1800						
	Burial depth of Bjerhammar sphere	10.0km	•					
	Action distance of SBRF center	100km	▲ ▼					
Re	uter network level K	3600	•					
Select	Select the adjustable height anomaly (m)							
Co adj	Contribution rate κ of adjustable observations 0.00							
	Open the ellipso of calculation su	idal height grid file rface						

- >> The parameter settings have been entered into the system!
- ** Click the [Start Computation] control button, or the [Start Computation] tool button...
- >> Computation start time: 2024-09-28 18:03:50
- >> Complete the computation!
- >> Computation end time: 2024-09-28 18:10:25

>> Type 0 of source observations: mean 0.3186 standard deviation 42.1772 minimum -296.0915 maximum 165.2611 >> Type 1 of source observations: mean -0.3510 standard deviation 0.2774 minimum -0.9982 maximum 0.3435

										2.2
Solution of normal equation LU 🔚 rntSRBForth30s0. chs 🖂										
			1	0	0.31	86 4	42.1772	-296.0915	165.2611	resid
TD lon	lat allinche	at and	2	1	-0.35	10	0.2774	-0.9982	0.3435	resid
ID IOU		JU YIA	3		1 :	102.39	9290	24.49440	2228.190	16.4
1	101.5041/	24.q	4		2	102.39	9590	24.50890	2170.200	-4.7
2	101.51250	24.0	5		3	102.39	9270	24.52960	2013.330	-18.3
3	101.52083	24.0	6		4	102.39	9660	24.54530	2122.500	1.0
4	101 52917	24 d	7		5	102.39	9690	24.56360	1971.280	-0.0
-	101 52750	21.0	8		6	102.39	9380	24.58130	1940.310	-12.0
5	101.53/50	24.9	9		7	102.39	9520	24.60360	1965.580	12.1
6	101.54583	24.q	10		8	102.39	9310	24.61780	1997.720	20.5
			11		9	102.39	9350	24.63840	1916.150	3.5

SRBFs 💕 Algorithm of gravity field approach using SRBFs

After the first estimation is completed, it is recommended to employ the output residual observation file *.chs as the input observation file again to refine target field elements. Generally, the stable solution can be achieved by 1 to 3 times cumulative SRBF approach, and the target field elements are qual to the sum of these SRBF approach solutions.

 The validity principle of once SRBF approach: (1) The residual target field element grid are continuous and differentiable, and whose standard deviation is as small as possible. (2) The statistical mean of residuals tends to zero with the increase of cumulative approach times, and there is no obvious reverse sign.

Extract data to be plot

🐟 Plot →

 The program is a high performance and adaptable modelling tool on local gravity field. Various observations with heterogeneity, different altitudes, cross-distribution and land-sea coexisting can be directly employed to estimate the all-element models of gravity field without reduction, continuation and gridding.

Gross error detection and basis function gridding of discrete field elements

1	🍯 All-element r	nodellina on	gravity field	using SRBFs from	heterogeneous observations
			<u></u>		

(3) Measure the regional height datum difference and GNSS-leveling external accuracy index. Start Computation Save process Follow example

101.52917

5 101.53750

24.00417

24.00417

-35.501

-35.491

-35.481

	Open the discrete heterogeneous residual observations file							
numbe	number of rows of file header 1							
colum	n ordinal number of el	lipsoidal 6	•					
columr	n ordinal number of w	eight 7	▲ ▼					
	Select SRBF	radial multipole kernel	~					
	Order m	3	-					
	Minimum degree	240	-					
	Maximum degree	1800	•					
	Burial depth of Bjerhammar sphere	10.0km	-					
	Action distance of SBRF center	100km	-					
Re	uter network level K	3600	•					
Select	the adjustable observations heigh	nt anomaly (m)	~					
Co adj	Contribution rate κ of adjustable observations							
	Open the ellipsoidal height grid file							

of file header standard dev type, weight. >> The parar ** Click the >> Computat >> Complete >> Computat >> The progr neight anoma	, whose form iation, minim neter setting [Start Comp ion start time the computa- ion end time am outputs f aly *.ksi (m), where * is th	nat: observati num, maximu is have been utation] contr e: 2024-09-2 ation! e: 2024-09-28 the all-element residual grav	on type (0~5 m. The recor entered into ol button, or f 28 18:24:31 18:29:19 nt grid files in vity anomaly), source obse d format: ID, lo the system! the [Start Com to the current *.gra (mGal), ro bose grid spec	rvation mean ongitude, lat putation] to directory. The sidual distu	it 0 2 7 68 (SD) of 0 0 2 43 (SD) of (SD) of nese grid files urbing gravity	the 2 m GNSS include the gradient *. (
>> The progr	am also out	puts SRBF ce	enter file *cer	ter.txt into the	current dire	ctory. The file	header for
decimal), geo	ocentric latitu	Ide, cell grid	area deviatio	n percentage,	longitude in	terval of cell g	rid in prime
>> Type 0 of	Residual ob	servations: me	an 0.2695 iea <u>n -0.562</u>	standard devia	viation 42.073	<u>996 minimum</u>	-296.0915 n -80.416
>> Type 1 of	source obse Residual ob	ervations: measure servations: m	an -0.3482 เea <mark>า -0.007</mark> (standard devia 0 standard de	iation 0.276 /iation 0.02	8 minimum 243 minimum	-0.9982 n -0.1327
Solution of no	ormal equation	on LU triang	ular decompo	osition ~	📑 S	Save the resul	ts as 🛛 🖣
ID lon lat	t ellipshg	t gravity c	listurbance	(mGal) heigh	t anomaly	(m) gravity	anomaly
2 10	01.50417 01.51250	24.00417	-35.528 -35.519	-20.0425	-0.4155	-27.9147	-15.97
3 10	01.52083	24.00417	-35.510	-43.9560	-0.5174	-437959	024.41

Only using the observed gravity disturbances

SRBFs 💕 Algorithm of gravity field approach using SRBFs

After the first estimation is completed, it is recommended to employ the output residual observation file *.chs as the input observation file again to refine target field elements. Generally, the stable solution can be achieved by 1 to 3 times cumulative SRBF approach, and the target field elements are qual to the sum of these SRBF approach solutions.

 The validity principle of once SRBF approach: (1) The residual target field element grid are continuous and differentiable, and whose standard deviation is as small as possible. (2) The statistical mean of residuals tends to zero with the increase of cumulative approach times, and there is no obvious reverse sign.

Extract data to be plot

🐟 Plot →

-52.5841

-62.9602

-63.3818

-0.5707

-0.6299

-0.6500

The program is a high performance and adaptable modelling tool on local gravity field. Various observations with heterogeneity, different altitudes, cross-distribution and land-sea coexisting can be directly employed to estimate the all-element models of gravity field without reduction, continuation and gridding.

 The program has strong capacity on the detection of observation gross errors, measurement of external accuracy indexes and control of computation performance.

residual height anomaly (m)

1071

102.57

residual disturbing gradient (E)

(4) All-element modelling on the residual gravity field using SRBFs

	Open the discrete heterogeneous residual observations file							
numbe	er of rows of file heade	er 1	^					
colum	column ordinal number of ellipsoidal 6							
colum	n ordinal number of w	eight 7	•					
	Select SRBF	radial multipole kernel	~					
	Order m	3	•					
	Minimum degree	360	•					
	Maximum degree	1800	•					
	Burial depth of Bjerhammar sphere	10.0km	▲					
	Action distance of SBRF center	100km	•					
Re	uter network level K	3600	•					
Select	the adjustable observations heigh	nt anomaly (m)	~					
Co adj	Contribution rate κ of adjustable observations 1.00							
	Open the ellipso of calculation su	idal height grid file rface						

- >> The parameter settings have been entered into the system!
- ** Click the [Start Computation] control button, or the [Start Computation] tool button...
- >> Computation start time: 2024-09-28 18:36:27
- >> Complete the computation!
- >> Computation end time: 2024-09-28 18:41:35

>> Type 0 of source observations: mean 0.2695 standard deviation 42.0737 minimum -296.0915 maximum 165.2611 >> Type 1 of source observations; mean -0.0071 standard deviation 0.2768 minimum -0.6571 maximum 0.6846

Solution of normal equation LU triangular decomposition

ID	lon	lat ellipsh	gt gravity	disturbanc	e(mGal) heig	ht anomaly	(m) gravity	anomaly
	1	101.50417	24.00417	-35.528	-40.8686	-0.3641	-40 Gan	turtr
	2	101.51250	24.00417	-35.519	-47.9108	-0.4135	-47,7836	-69.2
	3	101.52083	24.00417	-35.510	-55.2656	-0.4640	-55999	erait
	4	101.52917	24.00417	-35.501	-64.0905	-0.5229	-63,9296	+6%7r
	5	101.53750	24.00417	-35.491	-73.4852	-0.5848	-739059	
	6	101.54583	24.00417	-35.481	-72.3357	-0.5786	-72.1577	-106.54

SRBFs 💕 Algorithm of gravity field approach using SRBFs

After the first estimation is completed, it is recommended to employ the output residual observation file *.chs as the input observation file again to refine target field elements. Generally, the stable solution can be achieved by 1 to 3 times cumulative SRBF approach, and the target field elements are qual to the sum of these SRBF approach solutions.

The validity principle of once SRBF approach: (1) The residual target field element grid are continuous and differentiable, and whose standard deviation is as small as possible. (2) The statistical mean of residuals tends to zero with the increase of cumulative approach times, and there is no obvious reverse sign.

Extract data to be plot

🐟 Plot →

 The program is a high performance and adaptable modelling tool on local gravity field. Various observations with heterogeneity, different altitudes, cross-distribution and land-sea coexisting can be directly employed to estimate the all-element models of gravity field without reduction, continuation and gridding.

(5) All-element modelling on the remaining residual gravity field using SRBFs

	Open the discrete heterogeneous residual observations file							
numbe	number of rows of file header 2							
colum	column ordinal number of ellipsoidal 7							
colum	n ordinal number of w	eight 8	* *					
	Select SRBF	Poisson wavelet kernel	~					
	Order m	5	* *					
	Minimum degree	540	* *					
	Maximum degree	5400	•					
	Burial depth of Bjerhammar sphere	6.0km	•					
	Action distance of SBRF center	60km	* *					
Re	uter network level K	5400	•					
Select	the adjustable heigh	nt anomaly (m)	\sim					
Co adj	Contribution rate κ of adjustable observations							
	Open the ellipsoidal height grid file of calculation surface							

type, weight.

- >> The parameter settings have been entered into the system!
- ** Click the [Start Computation] control button, or the [Start Compu
- >> Computation start time: 2024-09-28 19:56:11
- >> Complete the computation!

101.52917

101.53750

101.54583

5

6

>> Computation end time: 2024-09-28 20:03:11

>> Type 0 of source observations: mean 0.0196 standard deviation 12.9866 minimum -80.4161 maximum 64.8276 >> Type 1 of source observations: mean -0.0002 standard deviation 0.0276 minimum -0.1059 maximum 0.0768 Solution of normal equation LU triangular decomposition save the results as -12.7065 101.50417 24.00417 -35.528 -12.7117 -0.0168 -0.0077-6.6234 -35.519 -6.6258 101.51250 24.00417 101.52083 3

SRBFs 💕 Algorithm of gravity field approach using SRBFs

After the first estimation is completed, it is recommended to employ the output residual observation file *.chs as the input observation file again to refine target field elements. Generally, the stable solution can be achieved by 1 to 3 times cumulative SRBF approach, and the target field elements are qual to the sum of these SRBF approach solutions.

 The validity principle of once SRBF approach: (1) The residual target field element grid are continuous and differentiable, and whose standard deviation is as small as possible. (2) The statistical mean of residuals tends to zero with the increase of cumulative approach times, and there is no obvious reverse sign.

Extract data to be plot

🐟 Plot →

The program is a high performance and adaptable modelling tool on local gravity field. Various observations with heterogeneity, different altitudes, cross-distribution and land-sea coexisting can be directly employed to estimate the all-element models of gravity field without reduction, continuation and gridding.

Swhen the minimum and maximum degree n to be set is equal, the program calculates the contribution of the degree n geopotential coefficients to the anomalous gravity field element, which can be employed to analyze and evaluate the spectral and space properties of the geopotential coefficient model.

gradient (E) on geoid

Provide and the system! action of the system! c:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s540.ksi. 2023-04-01 11:42:23 ion! c:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s2.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s2.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s2.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s2.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s2.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/fml attion] control button, or the [Start Computation] tool button 2 023-04-01 11:42:23 ion! 2023-04-01 11:42:58 ion! 2023-04-01 11:42:58 ion! 2023-04-01 11:42:58			- O X
Follow example n on two Weighted operation on two vector grid files wereation Prompts Save program process as phted plus, minus, or multiply operation on grid elements in two (vector) grid files with the same specifications. 1 C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s1.ksi. 2 C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s2.ksi. >PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s2.ksi. >PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s2.ksi. >2023-04-01 11:42:23 to:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/GMgeoidh30s540.ksi. >2023-04-01 11:42:23 to:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/GMgeoidh30s540.ksi. >PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s540.ksi. >PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/GMgeoidh30s540.ksi. >PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s74.ksi. >PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s74.ksi. >PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s74.ksi. >PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s74.ksi. >PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercis	6		
n on two Weighted operation on two vector grid files Weighted operation on two harmonic coefficient files weration Prompts The provided enderst in two (vector) grid files with the same specifications. C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s1.ksi. C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s2.ksi. C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s2.ksi. C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s2.ksi. C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/ttt.dat. have been entered into the system! comparison of the [Start Computation] tool button C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/GMgeoidh30s540.ksi. C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s540.ksi. C:/PAGravf4	ess Follow example		
beration Prompts Save program process as the plus, minus, or multiply operation on grid elements in two (vector) grid files with the same specifications. C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s1.ksi. C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s2.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s2.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/ttt.dat. have been entered into the system! tation] control button, or the [Start Computation] tool button 2 C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/ttt.dat. 2 C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/decidh30s540.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s540.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s540.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi	n on two	Weighted operation on two vector grid files	Weighted operation on two harmonic coefficient files
hted plus, minus, or multiply operation on grid elements in two (vector) grid files with the same specifications. 1 C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s1.ksi. 2 C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s2.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/ttt.dat. have been entered into the system! tation] control button, or the [Start Computation] tool button : 2023-04-01 11:42:23 ion! 2023-04-01 11:42:23 1 C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/ttt.dat. 2 C:/PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/GMgeoidh30s540.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoidexercise/geoidh30s740.ksi. PAGravf4.5_win64en/examples/Gravfmdlexercise/SRBFapprgeoid	peration Prompts		💱 Save program process as
2023-04-01 11:42:58	1 C:/PAGravf4.5_win64e 2 C:/PAGravf4.5_win64e PAGravf4.5_win64en/exa have been entered into 1 tation] control button, or t 2 023-04-01 11:42:23 1 C:/PAGravf4.5_win64e 2 C:/PAGravf4.5_win64e PAGravf4.5_win64en/exa have been entered into 1 tation] control button, or t 2 023-04-01 11:42:58 tion!	n/examples/Gravfmdlexercise/SRBFappr mples/Gravfmdlexercise/SRBFappr mples/Gravfmdlexercise/SRBFappr geoid he system! he [Start Computation] tool button n/examples/Gravfmdlexercise/SRBFappr n/examples/Gravfmdlexercise/SRBFappr mples/Gravfmdlexercise/SRBFappr geoid he system! he [Start Computation] tool button	rgeoidexercise/geoidh30s1.ksi. geoidexercise/geoidh30s2.ksi. Jexercise/ttt.dat. rgeoidexercise/ttt.dat. rgeoidexercise/GMgeoidh30s540.ksi. Jexercise/geoidh30srst.ksi.
	2023-04-01 11:42:58		

						P Otart bomput	ution
					💱 Save	data in the text	box as
03 8.33333	3333E-03						
-33.7535	-33.7164	-33.6523	-33.5595	-33.4179	-33.3591	-33.3358	-33.
-33.6258	-33.6609	-33.6573	-33.6169	-33.6296	-33.5763	-33.5225	-33.
-33.4755	-33.4724	-33.3894	-33.3498	-33.2645	-33.1311	-33.0862	-33.
-32.4707	-32.4397	-32.4184	-32.3482	-32.2581	-32.2344	-32.2335	-32.
-32.2429	-32.2772	-32.2816	-32.2898	-32.2932	-32.1852	-32.1180	-32.
-31.4463	-31.3014	-31.1980	-31.0795	-30.9423	-30.8688	-30.8479	-30.
-31.4348	-31.5441	-31.6690	-31.8185	-32.0528	-32.2333	-32.4930	-32.
-32.9076	-32.8458	-32.7264	-32.6166	-32.5037	-32.3871	-32.2208	-32.
-31.1574	-31.1236	-31.1548	-31.0763	-31.1730	-31.1844	-31.2838	-31.
-32.0342	-32.0506	-32.1050	-32.1891	-32.2451	-32.2861	-32.3063	-32.
-31.3717	-31.2824	-31.1524	-31.0362	-30.8769	-30.7398	-30.6249	-30.
-30.1843	-30.2084	-30.2612	-30.3113	-30.3836	-30.4434	-30.4978	-30.
-33.7772	-33.7099	-33.6149	-33.5101	-33.4569	-33.3426	-33.3007	-33.
-33.6218	-33.6892	-33.6735	-33.6380	-33.6450	-33.6149	-33.5519	-33.
-33.4403	-33.4107	-33.4100	-33.3293	-33.2834	-33.2124	-33.1301	-33.
-32.5836	-32.4849	-32.4603	-32.4476	-32.3126	-32.3387	-32.3249	-32.
-32.3153	-32.2858	-32.3556	-32.3484	-32.3075	-32.2408	-32.1714	-32.
-31.4632	-31.3562	-31.2521	-31.0671	-30.9646	-30.8536	-30.8188	-30.
-31.4416	-31.5030	-31.6635	-31.7979	-31.9444	-32.1609	-32.3918	-32.
-32.9024	-32.8134	-32.7078	-32.5839	-32.4764	-32.3104	-32.1883	-32.

vector (") on geoid

30"×30" all-element models of gravity field on geoid

Geoid (m, Global datum)

gravity disturbance (mGal)

disturbing gravity gradient (E)

Geoid (m, Regional datum)

vertical deflection vector (")

gravity anomaly (mGal)

25.

24.8

		H		
Obser	vation file	Save as	Import parameters	Start
	Dpen 🗊 🕞	the discre	te heterogeneous ations file	
numbe	er of rows of	file heade	er 1	•
colum	n ordinal nu h	mber of el eight in the	lipsoidal e record	▲ ▼
colum	n ordinal nu	mber of we	eight 7	▲ ▼
	Sele	ect SRBF	radial multipole kerne	- V
		Order m	3	•
	Minimu	m degree	360	•
	Maximu	m degree	1800	•
	Buria Bjerhamm	al depth of ar sphere	10.0km	•
	Action of SB	distance RF center	100km	•
Re	uter networ	k level K	3600	▲ ▼
Select	the adjusta observation	ble bns heigh	t anomaly (m)	~
Co adj	ntribution ra ustable obs	ite κ of ervations	1.00	*
	Open of calo	the ellipso culation su	idal height grid file rface	

gravity field on the terrain surface tion tool button ... >> Complete the computation! >> Computation end time: 2024-09-28 20:24:03 decimal), geocentric latitude, cell grid area deviation percentage, longitude interval of cell grid in prime vertical circle direction ('). >> Type 0 of source observations: mean 0.2695 standard deviation 42.0737 minimum -296.0915 maximum 165.2611 >> Type 1 of source observations: mean -0.0071 standard deviation 0.2768 minimum -0.6571 maximum 0.6846

1 101.50417 24.00417 2427.222 -35.5841 -0.3173-35.4866 24.00417 2480.981 -41.6169 -0.3594 -41.5065 2 101.51250 -48.2338 3 101.52083 24.00417 2435.157 -0.4049-48.1094 24.00417 2229.999 -56.3053 -0.4602 -56.1639 101.52917 4 -65.3908 101.53750 24.00417 2032.509 -0.5207 5 24.00417 1906.019 -64.7895 -0.5187-64.6301 6 101.54583

SRBFs 💕 Algorithm of gravity field approach using SRBFs

After the first estimation is completed, it is recommended to employ the output residual observation file *.chs as the input observation file again to refine target field elements. Generally, the stable solution can be achieved by 1 to 3 times cumulative SRBF approach, and the target field elements are qual to the sum of these SRBF approach solutions.

 The validity principle of once SRBF approach: (1) The residual target field element grid are continuous and differentiable, and whose standard deviation is as small as possible. (2) The statistical mean of residuals tends to zero with the increase of cumulative approach times, and there is no obvious reverse sign.

Extract data to be plot

🐟 Plot →

 The program is a high performance and adaptable modelling tool on local gravity field. Various observations with heterogeneity, different altitudes, cross-distribution and land-sea coexisting can be directly employed to estimate the all-element models of gravity field without reduction, continuation and gridding.

30"×30" full element models of gravity field on terrain surface

Height anonaly (m, Global datum)

gravity disturbance (mGal)

disturbing gravity gradient (E)

Height anomaly (m, Regional datum)

vertical deflection vector (")

gravity anomaly (mGal)

Only six steps universal in global land-sea area. Everyone will !

Process demo of full element modelling on gravity field using SRBFs in normal height system

> In normal height system, there is only a slight difference in the processing of the observed GNSSlevelling data, and the other modelling processes are same with that in orthometric height system.

Simple process demo of all-element modelling on gravity filed using SRBFs in normal height system

The observed gravity disturbances (mGal) and observed GNSS-levelling height anomalies (m)

Precise Approach of Earth Gravity Field and Geoid PAGravf4.5

			C A	20	CASM STATE	and the second	•
			Chinese	Academy	of Surveying	& Mappin	g
			0	ctober 20	24, Beijing, 0	China	
	۲	۲	0		0		
	۲	۲	۲	۲	۲	۲	
	۲		۲	۲	۲	۲	1
	۲	۲	۲	0	۲	۲	
	\odot	۲	۲	۲	Θ	۲	-
	0	۲	۲	۲	0	۲	
	\odot	۲	۲	۲	Θ	۲	•
•	0	۲	۲	$^{\circ}$	0	۲	۲
0	0	۲	۲	$_{\odot}$	۲	۲	۲
	0	۲	۲	0	۲	۲	
	0	\odot	0	0	\odot		
	0						
	\odot						
10	2.8"		103*		103.2"		103.4
	-33		-32		-31		_

The distribution of gravity points, 2~180th degree model geoidal height and ellipsoidal height of the terrain surface

(1) Remove reference model value from all the observations and then construct the heterogeneous observation residual file.^w example

Calculation of gravity field elements from global geopotential model	Calculation of model value for residual terrain (complete Bouguer) effects	Global geopotential coefficient model Calculator	Calculat characte
Open global geopotential coefficient model file	Save computation process as		
Select calculation file format		e officient medal file) control button or the IOne	
Discrete calculation points file	Click the Open global geopotential coefficient	model file C:/PAGravf4.5, win64en/data/EGM20	n geopolenilai mo
	** The window below only shows the g	eopotential coefficients data with no more than 2	2000 rows in it.
Open space calculation points file	>> Open space calculation points file C:	/PAGravf4.5_win64en/examples/Gravfmdlexerci	ise/SRBFapprwith
Set input point file format	** Look at the file information in the wir	Idow below and set the discrete point file format	
Number of rows of file header 1	 > Save the results as C:/PAGravt4.5_w ** Behind the record of the calculation 	/in64en/examples/Gravfmdlexercise/SRBFapprv	
Column ordinal number of ellipsoidal	 keeps 4 significant figures. 	point me, appends one of more columns of mod	
height in the record	>> The parameter settings have been e	ntered into the system!	The
Select elements to be calculated	** Click the [Start Computation] control	button, or the [Start Computation] tool button	
☑ height anomaly (m)	 A line calculation process need wait, or Computation start time: 2023-03-21 	15.28.18	at the calcuigra
gravity anomaly (mGal)	Complete the calculation of the mode	el value of (residual) gravity field element!	dis
gravity disturbance (mGal)	>> Computation end time: 2023-03-21 1	5:29:04	
vertical deflection (", SW)			
disturbing gravity gradient (E, radial)	Save the results as	ort setting parameters	
tangential gravity gradient (E, NW)	ID lon(degree decimal) lat ellpH	(m) ksi(m)	
Laplace operator (E)	1 102.4424 24.4117 1973.56	-32.7581 -32.6525	
	2 102.5467 24.4580 1659.69 3 102.6324 24.4582 2 20.99	-32.5792 -32.4433	
Minimum degree 2	4 102.7259 24.4605 2112.20	-32.3917 -32.3324	
Maximum degree 540	5 102.4208 24.5663 1991.56 6 102.5206 24.5663 1991.56	-32.6038 -32.5734	
	7 102.6344 24.5656 2193.72	-32.3822 -32.3128	h30s0.chs 🗷 🔚 obsresiduals0.
Extract elements to be plot	8 102.7258 24.5819 2304.57	-32.2197 -32.2069 1 ID	lon(degree
	9 102.8326 24.5755 1978.11	-32.5408 -32.0934 2	1 102.3
102.4" 102.6" 102.8" 103" 103.2"	104 The ellipsoidal boi	abt here at	2 102.3
25.6			3 102.3
	GNSS-leveling po	int is the	4 102.3
25.4	^{125,4} observed ellipsoid	al height.	5 102
			$\frac{1}{7}$ distu
23.2		9	8 102.3
25	- 25	10	9 102.3
	·	4221	1 102
24.8	24.8	4222	2 102
	1	4223	3 102
24.6	24.6	4224	4 102
24.41= 1	1= 24.4	4225	5 102
102.4° 102.6' 102.8' 103' 103.2'	103.4"	4226	6 102 7 102
-32.8 -32.6 -32.4 -32.2 -32 -31.8 -31.6 -31.4 -31.2		4227	Residu
haight an arcely (m)		aly (mCal) 4229	9 holio2
The model height anomaly (r	n) gravity anom	aly (mGal) 4230	
Whethe CNSSIL WATTING TO INT	set is equal, the program calculates the co	ontribution of the degree n geopotentia 4231	11 102
can be employed to analyze and evaluate the spectr	al and space properties of the geopotential co	pefficient model. 4232	12 102

(2) Detect the gross errors of the observations and then reconstruct the heterogeneous observation residual file. Follow example

	Open the discre residual observation	te heterogeneous ations file	
numbe	er of rows of file heade	er 1	•
colum	n ordinal number of el	lipsoidal 6	▲ ▼
colum	n ordinal number of w	eight 7	▲ ▼
	Select SRBF	radial multipole kernel	~
	Order m	5	•
	Minimum degree	360	•
	Maximum degree	1800	▲ ▼
	Burial depth of Bjerhammar sphere	10.0km	•
	Action distance of SBRF center	100km	*
Re	uter network level K	3600	•
Select	the adjustable observations heigh	nt anomaly (m)	~
Co adj	ntribution rate κ of ustable observations	0.00	•
	Open the ellipso	vidal height grid file Irface	

- >> The parameter settings have been entered into the system!
- ** Click the [Start Computation] control button, or the [Start Computation] tool button...
- >> Computation start time: 2024-09-28 21:09:13
- >> Complete the computation!
- >> Computation end time: 2024-09-28 21:14:56

>> Type 0 of source observations: mean 0.3186 standard deviation 42.1772 minimum -296.0915 maximum 165.2611 >> Type 1 of source observations: mean -0.3452 standard deviation 0.2739 minimum -0.9755 maximum 0.3702

Solution of r	normal equation	LU tria	📙 rntS	RBFort	h30s0. c	hs 🔀				
			1	0	0.3	186	42.1772	-296.0915	165.2611	res
TD 1 1			2	1	-0.3	510	0.2774	-0.9982	0.3435	res
ID ION Ia	at ellipsngt	gravit	3		1	102.	39290	24.49440	2228.190	16
1 :	101.50417 2	24.0041	4		2	102.	39590	24.50890	2170.200	- 4
2 .	101.51250 2	24.0041	5		3	102.	39270	24.52960	2013.330	-18
3	101.52083 2	24.0041	6		4	102.	39660	24.54530	2122.500	1
4	101.52917	24.0041	7		5	102.	39690	24.56360	1971.280	-0
5	101 52750	0041	8		6	102.	39380	24.58130	1940.310	-12
	101.55750 2	24.0041	9		7	102.	39520	24.60360	1965.580	12
6.	101.54583 2	24.0041	10		8	102.	39310	24.61780	1997.720	20
			11		9	102.	39350	24.63840	1916.150	3

SRBFs 💕 Algorithm of gravity field approach using SRBFs

After the first estimation is completed, it is recommended to employ the output residual observation file *.chs as the input observation file again to refine target field elements. Generally, the stable solution can be achieved by 1 to 3 times cumulative SRBF approach, and the target field elements are qual to the sum of these SRBF approach solutions.

 The validity principle of once SRBF approach: (1) The residual target field element grid are continuous and differentiable, and whose standard deviation is as small as possible. (2) The statistical mean of residuals tends to zero with the increase of cumulative approach times, and there is no obvious reverse sign.

Extract data to be plot

🐟 Plot →

The program is a high performance and adaptable modelling tool on local gravity field. Various observations with heterogeneity, different altitudes, cross-distribution and land-sea coexisting can be directly employed to estimate the all-element models of gravity field without reduction, continuation and gridding.

 The program has strong capacity on the detection of observation gross errors, measurement of external accuracy indexes and control of computation performance.

Separate the remaining residua of the observed GNSS-levelin and observed gravity disturband from rntSRBFgeoidh30s0.chs.

Start Computation

1860.000

1721.800

2340.000

1799.700

* *

▲ ▼

Scross error detection and basis function gridding of discrete field elements

Gross error detection on observations based on low-pass reference surface

5

Number of rows of file header 1

Column ordinal number of

Beyond multiples of the \ 5.0

the attribute to be detect

standard deviation n

0.6881

2158

16069

16573

19786

Open file Save as Import parameters

The discrete point file to be detect

💾 Open low-pass reference surface grid file

Save the results as

Save gross error as

Import setting parameters

Start Computation

101.98720

103.17160

102.74440

104.19500

16.6838

-80.6303

26.38060

26.38130

26.38830

24.64660

		Gross error of	detection and	d basis function gr	idding of discre	te field elements			
		Open file	E Save as	🦻 Import param	eters Sta	Tt Computation	Save process	Follow example	e
		6	Gross e based o	rror detection on n low-pass refe	n observatio erence surfac	ns ce	يت wit	timation of obser th specified refere	vation weight ence attribute
ina re		📜 The	e discrete	point file to be	detect				
BNSS-	leveling	Number of Column ord the attribute	rows of file dinal numb e to be def	e header 1 ber of 5 tect		>> Select the >> [Function] discrete point specified attri	computation func Select the low-pa , and then detect a pute value and ref	tion from the thre ss grid as the ref and separate the ference value.	e control butt erence surfac gross error re
30s0.c	hs.	standard de	eviation n ow-pass r	eference surfac	ce grid file	** The refere specified attri >> Open the	ence surface can b bute grid construc discrete geodetic	be constructed fro ted by weighted file C:/PAGravf4.	om discrete d basis functior 5_win64en/ex
			📑 Save	the results as		 ** Look at th >> Open low- >> Save the r >> Save no g 	e file information i pass reference su esults as C:/PAGr ross error results	in the window bel irface grid file C:/ avf4.5_win64en/ as C:/PAGravf4.5	ow and set the PAGravf4.5 version of the PAGravf4.5 version of the PAGravf4.5 version of the PAGrav for the PAG
field elements			0 K _			rntobsGNSSI	ksi0error.txt.	- 🗆 X	the system
Computation	Save process	illow example	e						r the [Start (
	Estima	tion of observa	ation weigh	nt e	253	Gridding of hete	rogeneous data b ed interpolation	oy basis	🔨 Extract p
				-			Save computati	ion process as	- 1028
>> [Function] discrete poin the specified ** The refer	Select the low-pass t, and then detect and attribute value and re ence surface can be	grid as the ref d separate the eference value constructed fro	erence su gross erro om discret	rface, interpola or records acco e data by simp	te the refere ording to the le gridding a	nce value of the statistical proper nd then low-pase	specified attribute ties of the differer s filtering, and ca	e value at the formation of the formatio	
>> Open the ** Look at th >> Open low	discrete geodetic file ne file information in t -pass reference surfa	C:/PAGravf4. he window bel ce grid file C:/	5_win64er 5_win64er ow and se PAGravf4	n/examples/Gra the discrete p 5_win64en/exa	avfmdlexerci: point file form amples/Grav	se/SRBFapprgeo nat fmdlexercise/SR	bidexercise/rntobs BFapprgeoidexer	distgrav0.txt. cise/	
 >> Save the >> Save no g rntobsdistgra 	results as C:/PAGrav gross error results as v0error.txt.	f4.5_win64en/ C:/PAGravf4.5	examples/ 5_win64en	Gravfmdlexero /examples/Gra	ise/SRBFap vfmdlexercis	prgeoidexercise/ e/SRBFapprgeo	/rntobsdistgrav0no videxercise/	perr.txt.	6 102.6 0.14 -0.12 -0.1 -0.1
>> The parar ** Click the >> Computat >> Complete	meter settings have b [Start Computation] c tion start time: 2023- computation!	een entered ir control button, 03-21 14:48:4	ito the sys or the [Sta 3	tem! art Computatior	n] tool button				
>> Computat	tion end time: 2023-0	3-21 14:48:43						~	
74.3694 000 97.1 300 -105.2	1661 97.1661 2839 -105.2839	102	Extrac	t plot data	104'	162	◆ Plot↓	03 S 104	
114.8 700 101.4	3811 114.8811 1916 101.4916	255			23.5	25.5		215	

Source observations input

0

1032

102.5

103.5

50

Observations without grass error

103

103.5

20 40

104

102.5

-80 -60 -40 -20 0

Computation] tool button...

Reconstruct the heterogeneous observation residual file obsresiduals01.txt.

(3) Measure the regional height datum difference and GNSS-leveling external accuracy index. Start Computation Save process Follow example

101.52917

5 101.53750

	Open the discre residual observation	ete heterogeneous ations file		of file he standar
numbe columr columr	er of rows of file heade n ordinal number of el height in th n ordinal number of w	er 1 lipsoidal e record 6 eight 7		type, we >> The ** Clicl >> Com >> Com
	Select SRBF	radial multipole kernel	~	>> Com >> The
	Order m	3	-	height a
	Minimum degree	240	-	>> The
	Maximum degree	1800	•	number
	Burial depth of Bjerhammar sphere	10.0km	•	>> Type
	Action distance of SBRF center	100km	•	>> Type **
Re	uter network level K	3600	• •	Oslutisu
Select	the adjustable heigh	nt anomaly (m)	~	Solution
Co adj	ntribution rate k of ustable observations	0.00	• •	ID lo
	Open the ellipso of calculation su	vidal height grid file		

of file header, whose format: observation type (0~5), source observation standard deviation, minimum, maximum. The record format: ID, longitud type, weight. >> The parameter settings have been entered into the system! ** Click the [Start Computation] control button, or the [Start Computatio >> Computation start time: 2024-09-28 21:17:31 >> Complete the computation! >> Computation end time: 2024-09-28 21:22:53 >> The program outputs the all-element grid files into the current directo height anomaly *.ksi (m), residual gravity anomaly *.gra (mGal), residual *.dft (", SW), where * is the output file name, and whose grid specificatio >> The program also outputs SRBF center file *center.txt into the curren number in meridian circle direction, maximum cell grid number in prime y decimal), geocentric latitude, cell grid area deviation percentage, longitu >> Type 0 of source observations: mean0.2695 standard deviation 4 ** Residual observations: mean0.2697 standard deviation	of the 2~540 th d of the 2~540
>> Type 1 of source observations: mean -0.3404 standard deviation (** Residual observations: mean -0.0069 standard deviation)	0.2735 minimum -0.9755 m 0.0233 minimum -0.1295
Solution of normal equation LU triangular decomposition <	🛃 Save the results as 🌖
ID lon lat ellipshgt gravity disturbance(mGal) height and 1 101.50417 24.00417 2427.222 -25.2756 -0.3 2 101.51250 24.00417 2480.981 -33.0116 -0.4 3 101.52083 24.00417 2435.157 -39.4282 -0.4	$\frac{1}{120} \frac{1}{120} \frac{1}$

24.00417 2229.999

24.00417 2032.509

1906.019

Spatial distribution of observations

Only using the observed gravity disturbances.

SRBFs Algorithm of gravity field approach using SRBFs

After the first estimation is completed, it is recommended to employ the output residual observation file *.chs as the input observation file again to refine target field elements. Generally, the stable solution can be achieved by 1 to 3 times cumulative SRBF approach, and the target field elements are qual to the sum of these SRBF approach solutions.

 The validity principle of once SRBF approach: (1) The residual target field element grid are continuous and differentiable, and whose standard deviation is as small as possible. (2) The statistical mean of residuals tends to zero with the increase of cumulative approach times, and there is no obvious reverse sign.

Extract data to be plot

🐟 Plot →

-47.4915

-57.3974

-58.2186

residual height anomaly (m)

The program is a high performance and adaptable modelling tool on local gravity field. Various observations with heterogeneity, different altitudes, cross-distribution and land-sea coexisting can be directly employed to estimate the all-element models of gravity field without reduction, continuation and gridding.

(4) All-element modelling on the residual gravity field using SRBFs

	Open the discret residual observation	te heterogeneous ations file	
numbe	er of rows of file heade	er 1	•
colum	n ordinal number of el	lipsoidal e record 6	•
colum	n ordinal number of w	eight 7	▲ ▼
	Select SRBF	radial multipole kernel	~
	Order m	3	•
	Minimum degree	360	•
	Maximum degree	1800	•
	Burial depth of Bjerhammar sphere	10.0km	•
	Action distance of SBRF center	100km	•
Re	uter network level K	3600	•
Select	the adjustable heigh	it anomaly (m)	~
Co adj	ntribution rate κ of ustable observations	1.00	•
	Open the ellipso of calculation su	idal height grid file rface	

- >> The parameter settings have been entered into the system!
- ** Click the [Start Computation] control button, or the [Start Computation] tool button...
- >> Computation start time: 2024-09-28 21:43:45
- >> Complete the computation!
- >> Computation end time: 2024-09-28 21:48:27

>> Type 0 of source observations: mean 0.2695 standard deviation 42.0737 minimum -296.0915 maximum 165.2611 >> Type 1 of source observations: mean -0.0107 standard deviation 0.2739 minimum -0.6410 maximum 0.7047

Solution of normal equation LU triangular decomposition

lon	lat ellipshg	t gravity	disturbance	e(mGal) heig	ht anomaly	(m) gravity	anomaly
1	101.50417	24.00417	2427.222	-33.8830	-0.3067	-33 Sau	TUFIG
2	101.51250	24.00417	2480.981	-41.3359	-0.3579	-41,2260	-58.70
3	101.52083	24.00417	2435.157	-47.3401	-0.3988	-47005	er-väti
4	101.52917	24.00417	2229.999	-55.4958	-0.4544	-55,3562	4582 x83
5	101.53750	24.00417	2032.509	-65.0026	-0.5171	-649439	
6	101.54583	24.00417	1906.019	-65.4479	-0.5213	-65.2877	-96.52

SRBFs 💕 Algorithm of gravity field approach using SRBFs

After the first estimation is completed, it is recommended to employ the output residual observation file *.chs as the input observation file again to refine target field elements. Generally, the stable solution can be achieved by 1 to 3 times cumulative SRBF approach, and the target field elements are qual to the sum of these SRBF approach solutions.

The validity principle of once SRBF approach: (1) The residual target field element grid are continuous and differentiable, and whose standard deviation is as small as possible. (2) The statistical mean of residuals tends to zero with the increase of cumulative approach times, and there is no obvious reverse sign.

Extract data to be plot

🐟 Plot →

ID

 The program is a high performance and adaptable modelling tool on local gravity field. Various observations with heterogeneity, different altitudes, cross-distribution and land-sea coexisting can be directly employed to estimate the all-element models of gravity field without reduction, continuation and gridding.

(5) Full element modelling on the remaining residual gravity field using SRBFs

	Open the discre residual observe	ete heterogeneous ations file	
numbe	er of rows of file heade	er 2	•
colum	n ordinal number of el	lipsoidal 7	▲ ▼
colum	n ordinal number of w	eight 8	^
	Select SRBF	Poisson wavelet kernel	~
	Order m	3	^
	Minimum degree	540	▲ ▼
	Maximum degree	1800	•
	Burial depth of	6.0km	▲ ▼
	Action distance	60km	▲ ▼
	of SBRF center		
Re	uter network level K	5400	▲ ▼
Select	the adjustable heigh	nt anomaly (m)	\sim
Co adj	ntribution rate k of ustable observations	1.00	•
	Open the ellipso of calculation su	vidal height grid file Irface	

of file header, whose format: observation type (0~5), source observation mean, standard deviation, minimum, maximum, residual observation mean, standard deviation, minimum, maximum. The record format: ID, longitude, latitude, ellipsoidal height, residual observation, source observation, observation type, weight.

>> The parameter settings have been entered into the system!

** Click the [Start Computation] control button, or the [Start (

>> Computation start time: 2024-09-28 21:56:01

>> Complete the computation!

>> Computation end time: 2024-09-28 22:00:17

is output from the previous step.

height anomaly *.ksi (m), residual gravity anomaly *.gra (mGal), residual disturbing gravity gradient *.grr (E, radial) and residual vertical deflection vector *.dft (", SW), where * is the output file name, and whose grid specification are the same as the input ellipsoidal height grid of calculation surface. >> The program also outputs SRBF center file *center.txt into the current directory. The file header format: Reuter grid level, SRBF center number, cell grid number in meridian circle direction, maximum cell grid number in prime vertical circle direction, latitude interval ('). The record format: ID, longitude (degree decimal), geocentric latitude, cell grid area deviation percentage, longitude interval of cell grid in prime vertical circle direction ('). >> Type 0 of source observations: mean 0.0620 standard deviation 12.9896 minimum -80.4161 maximum 64.8276 Residual observations: mean 0.1225 standard deviation 9.4454 minimum -42.1759 maximum 57.3920 >> Type 1 of source observations: mean -0.0014 standard deviation 0.0291 minimum -0.1886 maximum 0.0595 Residual observations: mean -0.0013 standard deviation 0.0154 minimum -0.0708 maximum 0.0315 Solution of normal equation LU triangular decomposition save the results as ID lon lat ellipshgt gravity disturbance(mGal) height anomaly(m) gravity anomaly(mGal), gravity gradient(E) vertical deflection -17.6250 101.50417 24.00417 2427.222 -0.0737 -17.6024 -44.0716 -17.1721 -17.1942 -0.0720 -43.0375 101.51250 24.00417 2480.981 -16.3729 -0.0689 101.52083 24.00417 2435.157 -16

24.00417 2229.999

24.00417 2032.509

24.00417 1906.019

SRBFs 💕 Algorithm of gravity field approach using SRBFs

After the first estimation is completed, it is recommended to employ the output residual observation file *.chs as the input observation file again to refine target field elements. Generally, the stable solution can be achieved by 1 to 3 times cumulative SRBF approach, and the target field elements are qual to the sum of these SRBF approach solutions.

The validity principle of once SRBF approach: (1) The residual target field element grid are continuous and differentiable, and whose standard deviation is as small as possible. (2) The statistical mean of residuals tends to zero with the increase of cumulative approach times, and there is no obvious reverse sign.

Extract data to be plot

🐟 Plot →

3

5

6

101.52917

101.53750

101.54583

-15.3566

-13.7680

-11.8549

-0.0652

-0.0593

-0.0522

-19

The program is a high performance and adaptable modelling tool on local gravity field. Various observations with heterogeneity, different altitudes, cross-distribution and land-sea coexisting can be directly employed to estimate the all-element models of gravity field without reduction, continuation and gridding.

 The program has strong capacity on the detection of observation gross errors, measurement of external accuracy indexes and control of computation performance.

residual disturbing gradient (E)

-150 -300 -30

to analyze and evaluate the spectral and space properties of the geopotential coefficient model

		LLI VER							
								—	
10 - L		E.,							
4	(Sec. 1997)								
ve pro	cess Follow	example							
	1	•							
operati	ion on two		Weighted oper	ration on two			Weighted	operation on tw	0
rid file		255	vector arid file	s			harmonic	coefficient files	•
	, 		vootor grid mo	•			name .		
ss ** (Depration Prome	ots					Save	e program proce	ess as
	- p								
orm we	eighted plus, mir	nus, or multiply	operation on g	rid elements in	two (vect	tor) grid	files with the	e same specifica	ations.
grid fil	e 1 C:/PAGravf4	.5_win64en/example.5	amples/Gravfm	ndlexercise/SRE	BFapprwi	thGNSS	lksi/surfhgt3	0s1.ksi.	
grid fil	e 2 C:/PAGravf4	.5_win64en/example.5_win64en/example.5_win64en/example.5_win64en/example.5_win64en/example.5_win64en/example.5_	amples/Gravfm	ndlexercise/SRE	BFapprwi	thGNSS	lksi/surfhgt3	0s2.ksi.	
s as C	:/PAGravf4.5_w	in64en/example	es/Gravfmdlexe	ercise/SRBFapp	prwithGN	SSIksi/tt	t.dat.		
setting	s have been en	tered into the s	ystem!						
Comp	utation] control	button, or the [S	Start Computat	ion] tool button.					
art tim	e: 2023-04-01	10:48:54							
omput	ation!								
nd time	: 2023-04-01 10	0:48:54							
arid fil	e 1 C:/PAGravf4	.5 win64en/ex	amples/Gravfm	dlexercise/SRE	3Fapprwi	thGNSS	lksi/ttt.dat.		
arid fil	e 2 C:/PAGravf4	5 win64en/ex	amples/Gravfm	dlexercise/SR	BFapprwi	thGNSS	lksi/GMsurft	nat30s540.ksi.	
s as C	/PAGravf4.5 w	in64en/example	es/Gravfmdlexe	ercise/SRBFap	orwithGN	SSIksi/s	urfhat30srst	.ksi.	
setting	is have been en	tered into the s	vstem!				5		- 1
Comp	utation1 control	button or the [S	Start Computat	ion] tool button					
art tim	e. 2023-04-01	10-40-26	start oompatat						
		10.43.30							
omput	ation!	10.49.30							- 1
omput	ation!	10.49.30							- 1
omput nd time	ation! e: 2023-04-01 10	0:49:36							
omput nd time ults as	ation! e: 2023-04-01 10	0:49:36	Import setting	parameters				Start comput	ation
omput nd time ults as	ation! 2023-04-01 10	D:49:36	Import setting	parameters				Start comput	ation
omput nd time ults as	ation! e: 2023-04-01 10	D:49:36	Import setting	parameters			Save	Start comput	ation box as
omput nd time ults as	ation! :: 2023-04-01 1(D:49:36	Import setting	parameters			Save	Start comput	ation box as
ults as	0.00833333 -23.502):49:36	Import setting	parameters	-22.2	572	Save	Start comput	ation box as
omput nd time ults as	0.00833333 -33.5023	-33.4576 -33.2940	-33.4101	-33.3326	-33.2	573	-33.2106	Start comput data in the text	ation box as
comput nd time ults as 3333 5491 2989 0664	0.00833333 -33.5023 -33.2807 -33.0754	-33.4576 -33.2940 -33.0782	-33.4101 -33.2808 -33.0391	-33.3326 -33.2391 -33.0197	-33.2 -33.2 -32.9	573 295 782	-33.2106 -33.1783 -32.9139	Start comput data in the text -33.1816 -33.1467 -32.8880	ation box as
comput nd time ults as 3333 5491 2989 0664 5465	0.00833333 -33.5023 -33.2807 -33.0754 -32.5329	-33.4576 -33.2940 -33.0782 -32.5213	-33.4101 -33.2808 -33.0391 -32.5057	-33.3326 -33.2391 -33.0197 -32.4663	-33.2 -33.2 -32.9 -32.4	573 295 782 226	-33.2106 -33.1783 -32.9139 -32.4106	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021	-33. -33. -32. -32.
comput nd time ults as 3333 5491 2989 0664 5465 3391	0.00833333 -33.5023 -33.023 -33.0754 -32.5329 -32.3345	-33.4576 -33.2940 -33.0782 -32.5213 -32.3433	-33.4101 -33.2808 -33.0391 -32.5057 -32.3371	-33.3326 -33.2391 -33.0197 -32.4663 -32.3289	-33.2 -33.2 -32.9 -32.4 -32.3	573 295 782 226 210	-33.2106 -33.1783 -32.9139 -32.4106 -32.2663	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021 -32.2296	-33. -33. -32. -32.
comput nd time ults as 3333 5491 2989 0664 5465 3391 9490	0.00833333 -33.5023 -33.2807 -33.0754 -32.5329 -31.8967	-33.4576 -33.2940 -33.0782 -32.5213 -32.3433 -31.8378	-33.4101 -33.2808 -33.0391 -32.5057 -32.3371 -31.7986	-33.3326 -33.2391 -33.0197 -32.4663 -32.3289 -31.7354	-33.2 -33.2 -32.9 -32.4 -32.3 -31.6	573 295 782 226 210 577	-33.2106 -33.1783 -32.9139 -32.4106 -32.2663 -31.6063	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021 -32.2296 -31.5729	ation box as -33. -32. -32. -32. -31.
comput nd time ults as 3333 5491 2989 0664 5465 3391 9490 7679	0.00833333 -33.5023 -33.2807 -33.0754 -32.5329 -31.8967 -31.8100	-33.4576 -33.2940 -33.0782 -32.5213 -32.3433 -31.8378 -31.8458	 Import setting -33.4101 -33.2808 -33.0391 -32.5057 -32.3371 -31.7986 -31.8794 	-33.3326 -33.2391 -33.0197 -32.4663 -32.3289 -31.7354 -31.9274	-33.2 -33.2 -32.9 -32.4 -32.3 -31.6 -32.0	573 295 782 226 210 577 070	-33.2106 -33.1783 -32.9139 -32.4106 -32.2663 -31.6063 -32.0667	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021 -32.2296 -31.5729 -32.1769	ation box as -33. -32. -32. -32. -31. -32.
and time alts as 3333 5491 2989 0664 5465 3391 9490 7679 3636	0.00833333 -33.5023 -33.2807 -33.0754 -32.5329 -32.3345 -31.8967 -31.8100 -32.2815	-33.4576 -33.2940 -33.0782 -32.5213 -32.3433 -31.8378 -31.8458 -32.2364	 -33.4101 -33.2808 -32.5057 -32.3371 -31.7986 -31.8794 -32.1763 	-33.3326 -33.2391 -33.0197 -32.4663 -32.3289 -31.7354 -31.9274 -32.1120	-33.2 -33.2 -32.9 -32.4 -32.3 -31.6 -32.0 -32.0	573 295 782 226 210 577 070 649	-33.2106 -33.1783 -32.9139 -32.4106 -32.2663 -31.6063 -32.0667 -32.0051	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021 -32.2296 -31.5729 -32.1769 -31.9262	ation box as -33. -32. -32. -32. -31. -31.
3333 5491 2989 0664 5465 3391 9490 7679 3636 4127	0.00833333 -33.5023 -33.2807 -32.5329 -32.3345 -31.8967 -31.8100 -32.2815 -31.3853	-33.4576 -33.2940 -33.0782 -32.5213 -32.3433 -31.8458 -32.2364 -31.3616	-33.4101 -33.2808 -33.0391 -32.5057 -32.3371 -31.7986 -31.8794 -32.1763 -31.3707	-33.3326 -33.2391 -33.0197 -32.4663 -32.3289 -31.7354 -31.9274 -32.1120 -31.3338	-33.2 -33.2 -32.9 -32.4 -32.3 -31.6 -32.0 -32.0 -31.3	573 295 782 226 210 577 070 649 652	-33.2106 -33.1783 -32.9139 -32.4106 -32.2663 -32.0667 -32.0051 -31.3738	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021 -32.2296 -31.5729 -32.1769 -31.9262 -31.4185	ation box as -33. -32. -32. -32. -31. -31.
ad time ults as 3333 5491 2989 0664 5465 3391 9490 7679 3636 4127 7078	0.00833333 -33.5023 -33.6023 -33.0754 -32.5329 -32.3345 -31.8967 -31.8100 -32.2815 -31.853 -31.7320	-33.4576 -33.2940 -33.0782 -32.5213 -32.3433 -31.8458 -31.8458 -32.2364 -31.3616 -31.7555	 Import setting -33.4101 -33.2808 -33.0391 -32.5057 -32.3371 -31.7986 -31.8794 -32.1763 -31.3707 -31.7845 	-33.3326 -33.2391 -33.0197 -32.4663 -32.3289 -31.7354 -31.9274 -32.1120 -31.3338 -31.8310	-33.2 -33.2 -32.9 -32.4 -32.3 -31.6 -32.0 -32.0 -31.0 -31.8	573 295 782 226 210 577 070 649 652 493	-33.2106 -33.1783 -32.9139 -32.4106 -32.2663 -31.6063 -32.0667 -32.0051 -31.3738 -31.8585	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021 -32.2296 -31.5729 -32.1769 -31.9262 -31.4185 -31.8589	ation box as -33. -33. -32. -32. -31. -31. -31.
and time ults as 3333 5491 2989 0664 5465 3391 9490 7679 3636 4127 7078 4118	0.00833333 -33.5023 -33.5023 -33.2807 -33.0754 -32.5329 -32.3345 -31.8967 -31.8100 -32.2815 -31.3855	-33.4576 -33.2940 -33.0782 -32.5213 -32.3433 -31.8378 -31.8458 -32.2364 -31.3616 -31.7555 -31.3049	 Import setting -33.4101 -33.2808 -33.0391 -32.5057 -32.3371 -31.7986 -31.8794 -32.1763 -31.3707 -31.7845 -31.2382 	-33.3326 -33.2391 -33.0197 -32.4663 -32.3289 -31.7354 -31.9274 -32.1120 -31.3338 -31.8310 -31.1886	-33.2 -33.2 -32.9 -32.4 -32.3 -31.6 -32.0 -32.0 -31.3 -31.8 -31.1	573 295 782 226 210 577 070 649 652 493 044	-33.2106 -33.1783 -32.9139 -32.4106 -32.2663 -32.0667 -32.0051 -31.3738 -31.8585 -31.0398	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021 -32.2296 -31.5729 -32.1769 -31.9262 -31.4185 -31.6589 -30.9757	ation box as -33. -32. -32. -31. -32. -31. -31. -31. -30.
amput and time ults as 3333 5491 2989 0664 53391 9490 7679 3636 4127 7078 4118 6801	0.00833333 -33.5023 -33.5023 -33.2807 -33.0754 -32.5329 -32.3345 -31.8907 -31.8100 -32.2815 -31.3853 -31.7320 -31.7320 -31.5505 -30.6703	-33.4576 -33.2940 -33.0782 -32.5213 -32.3433 -31.8378 -31.8458 -32.2364 -31.3616 -31.7555 -31.3049 -30.6680	 -33.4101 -33.2808 -33.0391 -32.5057 -32.3371 -31.7986 -31.8794 -32.1763 -31.3707 -31.7845 -31.2382 -30.6876 	-33.3326 -33.2391 -33.0197 -32.4663 -32.3289 -31.7354 -31.9274 -32.1120 -31.3338 -31.8310 -31.1886 -30.7101	-33.2 -33.2 -32.9 -32.4 -32.3 -31.6 -32.0 -32.0 -31.3 -31.8 -31.1 -30.7	573 295 782 226 210 577 649 652 493 044 424	-33.2106 -33.1783 -32.9139 -32.9139 -32.4106 -32.2663 -31.6063 -32.0667 -32.0051 -31.3738 -31.8585 -31.0398 -30.7690	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021 -32.2296 -31.5729 -32.1769 -31.9262 -31.4185 -31.8589 -30.9757 -30.7999	ation box as -33. -32. -32. -32. -31. -31. -31. -30. -30.
omput nd time ults as 33333 5491 2989 0664 5465 3391 9490 7679 3636 4127 7078 4118 6801 5532	0.00833333 -33.5023 -33.2807 -33.0754 -32.5329 -32.3345 -31.8967 -31.8100 -32.2815 -31.3853 -31.7320 -31.3505 -30.6703 -33.5182	-33.4576 -33.2940 -33.0782 -32.5213 -32.3433 -31.8378 -31.8458 -32.2364 -31.3616 -31.7555 -31.3049 -30.6680 -33.4596	 -33.4101 -33.2808 -33.0391 -32.5057 -32.3371 -31.7986 -31.8794 -32.1763 -31.3707 -31.2382 -30.6876 -33.3901 	-33.3326 -33.2391 -33.0197 -32.4663 -32.3289 -31.7354 -31.9274 -32.1120 -31.3338 -31.8310 -31.1886 -30.7101 -33.3147	-33.2 -33.2 -32.9 -32.4 -32.3 -31.6 -32.0 -32.0 -32.0 -31.3 -31.8 -31.1 -30.7 -33.2	573 295 782 226 210 577 070 649 652 493 044 424 663	-33.2106 -33.1783 -32.9139 -32.4106 -32.2663 -31.6063 -32.0667 -32.0051 -31.3738 -31.8585 -31.0398 -30.7690 -33.1999	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021 -32.2296 -31.5729 -32.1769 -31.9262 -31.4185 -31.8589 -30.9757 -30.7999 -33.1629	ation box as -33. -32. -32. -32. -31. -31. -31. -31. -30. -30. -33.
omput nd time ults as 3333 5491 2289 0664 5465 3391 9490 7679 3636 4127 7078 4118 6801 5532 2869	0.00833333 -33.5023 -33.2807 -33.0754 -32.5329 -32.3345 -31.8967 -31.8100 -32.2815 -31.3853 -31.7320 -31.3505 -31.3505 -31.3505 -31.3505 -31.3505 -31.3505 -31.3505 -31.3505 -31.3505 -31.3505 -31.2724	-33.4576 -33.2940 -33.0782 -32.5213 -32.3433 -31.8458 -32.2364 -31.3616 -31.7555 -31.3049 -30.6680 -33.4596 -33.2980	 Import setting -33.4101 -33.2808 -33.0391 -32.5057 -32.3371 -31.7986 -31.8794 -32.1763 -31.3707 -31.7845 -31.2382 -30.6876 -33.2904 	-33.3326 -33.2391 -33.0197 -32.4663 -32.3289 -31.7354 -31.9274 -32.1120 -31.3338 -31.8310 -31.1886 -30.7101 -33.3147 -33.2589	-33.2 -33.2 -32.9 -32.4 -32.3 -31.6 -32.0 -32.0 -31.3 -31.8 -31.1 -30.7 -33.2 -33.2	573 295 782 226 210 577 070 649 652 493 044 424 663 380	-33.2106 -33.1783 -32.9139 -32.4106 -32.2663 -32.0667 -32.0051 -31.3738 -31.8585 -31.0398 -30.7690 -33.1999 -33.2095	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021 -32.2296 -31.5729 -32.1769 -31.9262 -31.4185 -31.8589 -30.9757 -30.7999 -33.1629 -33.1703	ation box as -33. -32. -32. -32. -31. -31. -31. -31. -30. -33. -33.
omput nd time 33333 5491 2989 0664 5465 3391 9490 7679 3636 4127 7078 4118 6601 5532 2869 0642	0.00833333 -33.5023 -33.5023 -33.2807 -33.0754 -32.5329 -32.3345 -31.8967 -31.8100 -32.2815 -31.3853 -31.7320 -31.3853 -31.7320 -31.3505 -30.6703 -33.5182 -33.2724 -33.0578	-33.4576 -33.2940 -33.0782 -32.5213 -32.5213 -32.3433 -31.8378 -31.8458 -32.2364 -31.3616 -31.7555 -31.3049 -30.6680 -33.4598 -33.2980 -33.0452	 Import setting -33.4101 -33.2808 -33.0391 -32.5057 -32.3371 -31.7986 -31.8794 -32.1763 -31.3707 -31.7845 -31.2382 -30.6876 -33.3901 -33.2904 -33.0451 	-33.3326 -33.2391 -33.0197 -32.4663 -32.3289 -31.7354 -31.9274 -32.1120 -31.3338 -31.8310 -31.1886 -30.7101 -33.3147 -33.2589 -32.9993	-33.2 -33.2 -32.9 -32.4 -32.0 -31.6 -32.0 -31.3 -31.8 -31.1 -30.7 -33.2 -33.2 -32.9	573 295 782 226 210 577 070 649 493 044 424 663 380 806	-33.2106 -33.1783 -32.9139 -32.4106 -32.2663 -32.0667 -32.0051 -31.3738 -31.6585 -31.0398 -30.7699 -33.2095 -32.9390	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021 -32.2296 -31.5729 -32.1769 -31.9262 -31.4185 -31.8589 -30.9757 -30.7999 -33.1629 -33.1703 -32.8987	ation box as -33. -33. -32. -32. -31. -32. -31. -31. -31. -31. -31. -31. -33. -33. -32. -33. -32. -33. -33. -32. -33. -33. -32. -33. -33. -32. -33. -33. -32. -31. -33. -32.
x omput nd time 33333 5491 2989 0664 5465 5465 7479 3636 4127 7078 4118 6801 5532 2869 0642 5934	0.00833333 -33.5023 -33.5023 -33.2807 -33.2807 -33.2807 -32.5329 -32.3345 -31.8900 -32.2815 -31.8950 -31.8950 -31.3505 -30.6703 -33.5182 -33.2724 -33.0578 -32.5776	-33.4576 -33.2940 -33.0782 -32.5213 -32.3433 -31.8378 -31.8458 -32.2364 -31.7555 -31.3049 -30.6680 -33.4596 -33.2980 -33.0452 -32.5331	 Import setting -33.4101 -33.2808 -33.0391 -32.5057 -32.3371 -31.7986 -31.8794 -32.1763 -31.3707 -31.7845 -31.2382 -30.6876 -33.3901 -33.2904 -33.0451 -32.5175 	-33.3326 -33.2391 -33.0197 -32.4663 -32.3289 -31.7354 -31.9274 -32.1120 -31.3338 -31.8310 -31.1886 -30.7101 -33.3147 -33.2589 -32.2993 -32.5060	-33.2 -33.2 -32.9 -32.4 -32.0 -32.0 -32.0 -32.0 -31.3 -31.8 -31.1 -30.7 -33.2 -33.2 -32.9 -32.4	573 295 782 226 210 577 649 652 493 044 424 663 3806 441	-33.2106 -33.1783 -32.9139 -32.9139 -32.4106 -32.2663 -31.6063 -32.0667 -32.0051 -31.3738 -31.8585 -31.0398 -30.7690 -33.1999 -33.2095 -32.9390 -32.4564	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021 -32.2296 -31.5729 -32.1769 -31.9262 -31.4185 -31.8589 -30.9757 -30.7999 -33.1629 -33.1703 -32.8987 -32.4427	ation box as -33. -32. -32. -32. -31. -31. -31. -31. -30. -30. -33. -33. -32. -32. -32.
omput nd time ults as 3333 5491 2989 0664 545 3391 9490 7679 3636 4127 7078 4118 6801 5532 2869 0642 5534 3673	0.00833333 -33.5023 -33.2807 -33.0754 -32.5329 -32.3345 -31.8967 -31.8100 -32.2815 -31.3853 -31.7320 -31.3505 -30.6703 -33.5182 -33.2724 -33.0778 -32.5776 -32.3727	-33.4576 -33.2940 -33.0782 -32.5213 -32.3433 -31.8458 -32.2364 -31.7555 -31.3049 -30.6680 -33.4596 -33.2980 -33.0452 -32.5331 -32.3496	 Import setting -33.4101 -33.2808 -33.0391 -32.5057 -32.3371 -31.7986 -31.8794 -32.1763 -31.3707 -31.2382 -30.6876 -33.3901 -33.2904 -33.0451 -32.5175 -32.3755 	-33.3326 -33.2391 -33.0197 -32.4663 -32.3289 -31.7354 -31.9274 -32.1120 -31.3338 -31.8310 -31.1886 -30.7101 -33.3147 -33.2589 -32.9993 -32.5060 -32.3629	-33.2 -33.2 -32.9 -32.4 -32.3 -31.6 -32.0 -32.0 -32.0 -32.0 -31.3 -31.8 -31.1 -30.7 -33.2 -33.2 -32.9 -32.4 -32.3	573 295 782 226 210 577 070 649 652 493 044 424 663 380 806 441 337	-33.2106 -33.1783 -32.9139 -32.9139 -32.4106 -32.2663 -31.6063 -32.0061 -31.3738 -31.0398 -31.0398 -30.7690 -33.1999 -33.2095 -32.9390 -32.4564 -32.2984	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021 -32.2296 -31.5729 -32.1769 -31.9262 -31.4185 -31.8589 -30.9757 -30.7999 -33.1629 -33.1703 -32.8987 -32.4227 -32.2570	ation box as -33. -32. -32. -32. -31. -31. -31. -31. -31. -31. -31. -31. -32.
omput nd time 33333 5491 2989 0664 5465 3391 9490 7679 3636 4127 7078 4118 5532 2869 0642 5934 3673 9733	0.00833333 -33.5023 -33.2807 -33.2807 -32.5329 -32.5329 -32.3345 -31.8967 -31.8100 -32.2815 -31.3853 -31.3853 -31.7320 -31.3505 -32.5776 -32.5776 -32.5776 -32.5776 -32.5776 -32.3727 -31.9140	-33.4576 -33.2940 -33.0782 -32.5213 -32.3433 -31.8458 -32.2364 -31.3616 -31.7555 -31.3049 -30.6680 -33.4596 -33.2980 -33.0452 -32.5331 -32.3496 -31.8755	 -33.4101 -33.2808 -33.0391 -32.5057 -32.3371 -31.7986 -31.8794 -32.1763 -31.2382 -30.6876 -33.2904 -33.0451 -32.5175 -31.8378 	-33.3326 -33.2391 -33.0197 -32.4663 -32.3289 -31.7354 -31.9274 -32.1120 -31.3338 -31.8310 -31.1886 -30.7101 -33.3147 -33.2589 -32.9993 -32.5060 -32.3629 -31.7481	-33.2 -33.2 -32.9 -32.4 -32.3 -31.6 -32.0 -32.0 -31.3 -31.8 -31.1 -30.7 -33.2 -33.2 -32.9 -32.4 -32.3 -31.6	573 295 782 226 210 577 070 649 649 649 649 424 663 380 806 441 337 752	-33.2106 -33.1783 -32.9139 -32.4106 -32.2663 -32.0667 -32.0051 -31.3738 -31.8585 -31.0398 -30.7690 -33.1999 -33.2095 -32.9390 -32.4564 -32.2984 -31.6082	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021 -32.2296 -31.5729 -32.1769 -31.9262 -31.4185 -31.8589 -30.9757 -30.7999 -33.1629 -33.1703 -32.8987 -32.4427 -32.2570 -31.5619	ation box as -33. -32. -32. -32. -31. -31. -31. -31. -31. -31. -31. -32. -32. -31. -32. -32. -31. -32. -31. -31. -32. -32. -31. -32. -32. -31. -32. -32. -31. -32. -31. -32. -32. -32. -31. -32. -32. -32. -31. -32. -32. -32. -31. -32. -33. -32. -32. -31. -32. -33. -32. -33. -32. -31. -32. -33. -32. -33. -32. -33. -33. -33. -33. -33. -33. -33. -33. -33. -33. -32. -33. -33. -32. -33. -33. -32. -33. -32. -33. -33. -32. -32. -33. -33. -32. -32. -32. -33. -33. -32. -32. -32. -33. -32. -32. -32. -32. -33. -32. -32. -32. -32. -32. -32. -32. -32. -32. -32. -32. -32. -31.
xi x	0.00833333 -33.5023 -33.5023 -33.2807 -33.0754 -32.5329 -32.3345 -31.8967 -31.8100 -32.2815 -31.853 -31.3505 -31.3505 -33.5182 -33.5182 -33.5776 -32.5776 -32.5776 -32.9777 -31.9140 -31.8201	-33.4576 -33.2940 -33.0782 -32.5213 -32.3433 -31.8458 -32.2364 -31.8458 -32.2364 -31.3616 -31.7555 -31.3049 -33.6480 -33.2980 -33.0452 -32.5331 -32.3496 -31.8755 -31.8755 -31.8427	 Import setting -33.4101 -33.2808 -33.0391 -32.5057 -32.3371 -31.7986 -31.8794 -32.1763 -31.2382 -30.6876 -33.2904 -33.2904 -33.2904 -32.5175 -32.3755 -31.8378 -31.8877 	-33.3326 -33.2391 -33.0197 -32.4663 -32.3289 -31.7354 -31.9274 -32.1120 -31.3338 -31.8310 -31.1886 -30.7101 -33.2589 -32.9993 -32.5060 -32.3629 -31.7481 -31.9196	-33.2 -33.2 -32.9 -32.4 -32.0 -31.6 -32.0 -31.0 -31.0 -31.0 -31.1 -30.7 -33.2 -33.2 -32.9 -32.4 -32.3 -31.6 -31.9	573 295 782 226 210 577 070 649 652 493 044 424 663 380 806 441 337 752 599	-33.2106 -33.1783 -32.9139 -32.4106 -32.2663 -31.6063 -32.0667 -32.0051 -31.3738 -31.8585 -31.398 -30.7690 -33.1999 -33.2095 -32.9390 -32.4564 -32.2984 -32.2984 -31.6082 -32.0301	Start comput data in the text -33.1816 -33.1467 -32.8880 -32.4021 -32.2296 -31.5729 -32.1769 -31.9262 -31.4185 -30.9757 -30.7969 -33.1629 -33.1703 -32.8987 -32.4427 -32.2570 -31.5619 -32.1148	ation box as -33. -33. -32. -32. -31. -32. -31. -31. -31. -30. -30. -33. -32. -31. -31. -31. -31. -31. -31. -31. -31. -31. -32. -31. -32. -31. -32. -31. -31. -31. -31. -31. -31. -31. -31. -31. -31. -31. -31. -31. -31. -31. -31. -32. -31. -32. -31. -32. -31. -32. -31. -32. -31. -31. -32. -31. -32. -31. -32. -31. -32. -31. -32. -31. -32. -31. -32. -31. -32. -31. -32. -31. -32. -31. -32. -31. -32. -31. -32. -31. -32. -31. -32. -32. -31. -32. -31. -32. -32. -31. -32. -31. -32. -32. -32. -32. -31. -32.

30"×30" full element models of gravity field on terrain surface

Height anonaly (m, Global datum)

disturbing gravity gradient (E)

Height anomaly (m, Regional datum)

	Obser	vation file	E Save as	with the second	Start					
	Open the discrete heterogeneous residual observations file									
	number of rows of file header 1 column ordinal number of ellipsoidal height in the record 6									
	column ordinal number of weight 7									
		Sele	ect SRBF	radial multipole kerne	l					
			Order m	3	•					
		Minimur	n degree	360	-					
		Maximu	m degree	1800	•					
		Buria Bjerhamm	al depth of ar sphere	10.0km	-					
		Action of SB	distance RF center	100km	•					
	Re	uter networ	k level K	3600	•					
	Select	Select the adjustable observations height anomaly (m)								
	Contribution rate κ of adjustable observations									
		Open the ellipsoidal height grid file of calculation surface								

🙀 All-element modelling on gravity field using SRBFs from heterogeneous obs In step (3) to step (6) above, the input data file and all the parameter settings are kept the same, and only the calculation surface is changed to the geoid mdlgeoidh30s.dat. Using the same computation process, you can synchronously obtain the 30" full element models geoidh30srst.xxx of the gravity field on the geoid system! on, or the [Start Computation] tool button... >> Computation start time: 2024-09-28 22:09:35 >> Complete the computation!

>> Computation end time: 2024-09-28 22:15:24

>> The program outputs the all-element grid files into the current directory. These grid files include the residual gravity disturbance *.rga (mGal), residual height anomaly *.ksi (m), residual gravity anomaly *.gra (mGal), residual disturbing gravity gradient *.grr (E, radial) and residual vertical deflection vector *.dft (", SW), where * is the output file name, and whose grid specification are the same as the input ellipsoidal height grid of calculation surface. >> The program also outputs SRBF center file *center.txt into the current directory. The file header format: Reuter grid level, SRBF center number, cell grid number in meridian circle direction, maximum cell grid number in prime vertical circle direction, latitude interval ('). The record format: ID, longitude (degree decimal), geocentric latitude, cell grid area deviation percentage, longitude interval of cell grid in prime vertical circle direction ('). >> Type 0 of source observations: mean 0.2695 standard deviation 42.0737 minimum -296.0915 maximum 165.2611 Residual observations: mean 0.0620 standard deviation 12.9896 minimum -80.4161 maximum 64.8276 >> Type 1 of source observations: mean -0.0107 standard deviation 0.2739 minimum -0.6410 maximum 0.7047 Residual observations: mean -0.0014 standard deviation 0.0291 minimum -0.1886 maximum 0.0595

Solution of normal equation LU triangular decomposition

Save the results as

ID lo	on	lat ellipsho	gt gravity	disturbance	(mGal) hei	ght anomaly	(m) gravity	anomaly
	1	101.50417	24.00417	-35.528	-38.9218	-0.3520	-38.8135	-52.40
	2	101.51250	24.00417	-35.519	-47.5954	-0.4118	-47.4688	-67.68
	3	101.52083	24.00417	-35.510	-54.2226	-0.4570	-54.0820	-78.40
	4	101.52917	24.00417	-35.501	-63.1927	-0.5163	-63.0339	-94.50
	5	101.53750	24.00417	-35.491	-73.0584	-0.5808	-72.8797	-112.76
	6	101.54583	24.00417	-35.481	-73.0444	-0.5814	-72.8656	-107.73

SRBFs 💕 Algorithm of gravity field approach using SRBFs

After the first estimation is completed, it is recommended to employ the output residual observation file *.chs as the input observation file again to refine target field elements. Generally, the stable solution can be achieved by 1 to 3 times cumulative SRBF approach, and the target field elements are qual to the sum of these SRBF approach solutions.

 The validity principle of once SRBF approach: (1) The residual target field element grid are continuous and differentiable, and whose standard deviation is as small as possible. (2) The statistical mean of residuals tends to zero with the increase of cumulative approach times, and there is no obvious reverse sign.

Extract data to be plot

🐟 Plot →

The program is a high performance and adaptable modelling tool on local gravity field. Various observations with heterogeneity, different altitudes, cross-distribution and land-sea coexisting can be directly employed to estimate the all-element models of gravity field without reduction, continuation and gridding.

 The program has strong capacity on the detection of observation gross errors, measurement of external accuracy indexes and control of computation performance.

residual height anomaly (m)

1071

102.57

residual disturbing gradient (E)

102.57

30"×30" full element models of gravity field on geoid

Geoid (m, Global datum)

gravity disturbance (mGal)

disturbing gravity gradient (E)

Geoid (m, Regional datum)

vertical deflection vector (")

gravity anomaly (mGal)

(1) The analytical function relationships between gravity. elements are strict, and the SRBF approach performan nothing to do with the observation errors. (2) Various heterogeneous observations in the different altitud cross-distribution, and land-sea coexisting cases can be directly employed to model the all-element gravity field models on or outisde the geoid without reduction, continuation and griding. ③ Can integrate very few astronomical vertical deflection or GNSS-levelling data, and effectively absorb the edge effect. (4) Has the strong capacity in the detection of observation gross errors, measurement of external accuracy indexes and control of computational performance.

More innovation and application potential need to be discovered and excavated in the future computing practice !