Integral algorithm formula of anomalous gravity field

7.9.1 Stokes and Hotine integral formulas outside geoid
(1) It is known that the gravity anomaly 4g on an equipotential surface outside the
geoid, the disturbing potential T(r, 8, 1) or the height anomaly {(r, 8, 1) at the calculation
point (r, 8, 1) outside the geoid can be calculated by Stokes integral Formula:

T(r,0,1) =y{(r,0,1) = iﬂfﬁg’b’(r, P, r")ds (9.1)

where 1’ is the geocentric distance of the move areal element ds (the move point) on
the equipotential surface where the gravity anomaly 4g’ is located, S(r,y,r") is called
as the generalized Stokes kernel function, and:
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where L is the space distance from the move point to the calculation point.

When the calculation point is the same as the move point, the integral is singular:
Zlo="22Ago (9.3)

(2) It is known that the gravity disturbance §g on an equipotential surface outside
the geoid, the disturbing potential T(r,8,4) or the height anomaly {(r,6,1) at the
calculation point (r, 8, 1) outside the geoid can be calculated by Hotine integral Formula:

T(r,0,1) =y{(r,0,1) = iffs §g'H(r, Y, r'")ds (9.4)

where H(r,y,r") is called as the generalized Hotine kernel function, and:
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When the calculation point is the same as the move point, the integral is singular:
Clo =269 (9.6)

If » and r’ are taken as constants, the generalized Stokes/Hotine integral can be
calculated by the fast FFT algorithm.

7.9.2 Vening-Meinesz integral formulas outside geoid
Taking the horizontal derivatives on both sides of the generalized Stokes formula,
we have:

-1 ,08(rap,r’) Iy _ -1 ,0s(rpr") iy
E - 4mry ffs Ag Y dp dS, nm= 4TTrCcosQy ffs Ag oY oA ds (97)
From cosy = singsing’ + cospcosgp’cos(A’ — 1), (9.8)
differentiating both sides, we get:
—simpg—:ﬁ = cos@sing’ — sinpcosg’cos(A' — 1) (9.9)
—sim,l)(;—f = cos@cosg'sin(A' — 1) (9.10)

From the spherical trigonometry formula, we can get:
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simpcosa = cosgsing’ — sinpcosg’cos(A' — 1)
simsina = cos@’sin(A’ — 1)

Combining formulas (9.9) ~ (9.12), we can get:
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Substitute formula (9.13) into (9.7), we have:
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In the same way, by calculating the horizontal derivatives on both sides of the

generalized Hotine formula, we can get:
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Formulas (9.14) and (9.18) are also called as generalized Vening-Meinesz integral
formulas, and formulas (9.17) and (9.20) are generalized Vening-Meinesz kernel

functions.

Using the formula (9.14), the vertical deflection at any point outside the geoid be
calculated from the gravity anomaly on a certain equipotential surface. And using the



formula (9.18), the vertical deflection at any point outside the geoid be calculated from
the gravity disturbance on a certain equipotential surface.

If r and r' are taken as constants, the generalized Vening-Meinesz integral
formulas (9.14) and (9.18) can be calculated by the fast FFT algorithm.

7.9.3 Integral formula of inverse operation of anomalous gravity field element
(1) Calculation of the gravity disturbance by integral on the height anomaly
According to the definition of gravity disturbance, take the vertical derivative of the

Poisson integral formula of disturbing potential T
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where n is the vertlcal I|ne dlrectlon (reverse to the radial direction r), and [ is the

distance between the calculation point and the move point on the sphere:
l= erin% (9.22)

Formula (9.21) is also known as the inverse Hotine integral formula under spherical
approximation.
When the calculation point is the same as the move point, the integral is singular:

69'0 = #((xx + (yy) (9.23)

where {,, and {,, are the second-order horizontal partial derivatives of the height
anomaly at the calculation point, and y{,, and y{,, are the northward direction of the
horizontal gravity gradient and the eastward direction of the horizontal gravity gradient,
respectively.

Using formula (9.21), the gravity disturbance on the equipotential surface can be
calculated from the height anomaly on the surface.

Since the gravity disturbance §g is the derivative of the disturbing potential T along
the vertical direction n, formular (9.21) requires that the boundary surface where the
height anomaly is located should be an equipotential surface.

(2) Calculation of the gravity anomaly by integral on the height anomaly

Substitute the basic gravimetric equation into formular (9.21) to get:

dg=-LfSeas -2 (9.24)
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Formula (9.24) is also known as the inverse Stokes integral formula under spherical
approximation.
Using formula (9.24), the gravity anomaly on the equipotential surface can be
calculated from the height anomaly on the surface.
(3) Calculation of the height anomaly by integral on the vertical deflection

{= —ff:: ctg (fcosa + nsina) do (9.25)
When the calculation point is the same as the move point, the integral is singular:

Clo=22(&y +n2) (9.26)



where &, and 7, are the partial derivatives of ¢ and n in the east and north directions,
respectively.

Using formula (9.26), the height anomaly on the equipotential surface can be
calculated from the vertical deflection on the surface.

(4) Calculation of the gravity anomaly by integral on the vertical deflection

Ag = — ﬁffa (36561,[) - cscd)csc% —tg %) (écosa + nsina) do (9.27)
When the calculation point is the same as the move point, the integral is singular:
4glo = -1 (g, +1,) (9.28)

Using formula (9.27), the gravity anomaly on the equipotential surface can be
calculated from the vertical deflection on the surface.

(5) Calculation of the gravity disturbance by integrating on the vertical deflection

From the basic gravimetric equation, and the formulas (9.25) and (9.27), the integral
formula for the gravity disturbance from the vertical deflection can be obtained:

5g = %ff """ (3csc1,11 - cscgbcsc% —tg % — 2ctg %) (écosa +nsina)do  (9.29)

g

When the calculation point is the same as the move point, the integral is singular:

6glo = —%( A, +%) (§y+nx) (9.30)

Using formula (9.29), the gravity disturbance on the equipotential surface can be
calculated from the vertical deflection on the surface.

Formulas (9.25), (9.27) and (9.29) are also known as the inverse Vening-Meinesz
integral formula under spherical approximation.

If r is taken as constant, formulas (9.21), (9.24), (9.25), (9.27) and (9.29) can all be
calculated by the fast FFT algorithm.

7.9.4 Positive and negative operation formula of anomalous field element

integral

(1) Poisson integral formula of anomalous field element

Any type of anomalous gravity field element u can be expressed by the linear
combination of the disturbing potential or its partial derivatives. Therefore, the radial
gradient and Poisson integral formula of field element are similar.

Given the anomalous gravity field element on a certain boundary surface, the
Poisson integral relation satisfied by the same type of field element at any point
(r, 6, 1) outside the geoid:

uGr 0,0 =— [~
When the calculation point is the same as the move point, Yy - 0, ' > rt, L - ry
and r —r't - r?, the integral is singular. Considering
ds = r'2simpdipda = mryp} (9.32)
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2r
(2) Radial gradient integral formula for anomalous field elements

Given the anomalous gravity field element on a certain equipotential surface, the
radial gradient of the field element in the Stokes boundary value theory can be
calculated by the following integral formula:

o L et g (9.35)
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If r and r’ are taken as constants, the integral formulas (9.31) and (9.35) can be
calculated by the fast FFT algorithm.

(3) Integral positive and negative operation formula for disturbing gravity gradient

Given the disturbing gravity gradient T;.. on some an equipotential surface outside
the geoid, the gravity disturbance 6g = —T;. at any calculation point (r, 8, 1) outside the
geoid satisfies the following integral formula:

85g(r,0,1) = iffs T, H(r,y,r")ds (9.36)

where H(r,,r") is the generalized Hotine kernel function.

Given the gravity disturbance 6g on a certain equipotential surface, the disturbing
gravity gradient at any point on the equipotential surface can be calculated by the
following integral formula:

_ 1 ~8g-8g’
T, = =[] 223 4 (9.37)

(4) Calculation of the disturbing gravity gradient by integral on the gravity
disturbance

Given the gravity disturbance §g on a certain boundary surface, the disturbing
gravity gradient T, at the any point (r, 8, 1) outside the geoid can also be calculated.

Using the Poisson integral formular (9.31) for the gravity disturbance 6g, we have:

T‘Z —T’Z

5g(r,0,2) = 4—;5 """ 89’ = —ds (9.38)

s L3
Considering T,, = %(;—T T) = —% (8g), taking the partial derivatives of both sides
of (9.38) with respect to r, we get:

T. = _Lﬂ‘ 6g,ir2;:’2 ds = L_U 6g,r3—5rr’2+(r2+3r’2)r’zcos¢ ds (9.39)

4mr JJs ar 4mtr 7Vs L5

The formula (9.39) for calculating the disturbing gravity gradient outside the geoid
from the gravity disturbance on the boundary surface is derived from the Poisson
integral formula for solving the first boundary value problem. Therefore, it is not required
that the boundary surface should be a gravity equipotential surface.

Calculation formulas of normal gravity field at any point in Earth space
(1) The normal geopotential U at the Earth space point (r, 6, 4) in the spherical
coordinate system can be expressed as spherical harmonic series:
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U(r,6) = g [1 -y (a) nJZnPZn(COS 9)] + %wzrz sin? 6 (1.1)

r

Jan = (1 =2 (1 — 4+ 2 (12)

(2n+1)(2n+3) e?

where r is the distance from the calculation point to the center of the level ellipsoid, 1 is
the longitude of the calculation point, 8 = /2 — ¢ is the geocentric colatitude, ¢ is the
geocentric latitude, a is the semimajor axis of the ellipsoid, J, is the dynamic shape
factor of the Earth, GM is the geocentric gravitational constant, w is the mean rotation
rate of the Earth, e is the first eccentricity of the level ellipsoid, and P,,(cos6) is the
Legendre function.

(2) Taking the partial derivative of the normal gravitational potential U(r, 8) formula
(1.1) in the spherical coordinate system, the normal gravity vector at the Earth space
point can be obtained:

Y(T, 9) =Yrer +Vo6p (1 3)
2n
re= =21 =S @n+ D (%) JonPan(cos0)| + wrsine (1.4)
Py o 2n F] 3
Yo = % = _i_IZVII:Zn=1 (%) Jan 54 Pan(cos 9)] + w?rsin O cosO (1.5)

Since e, 1 eg, the normal gravity scalar value can be obtained:

Y= /VTZ+V§ (1.6)

and the north declination angle of the normal gravity line direction relative to the Earth
center of mass can also be obtained:

9, = tan~1¥e (1.7)

Yr
(3) Furtherly taking the partial derivative of the normal gravity vector y(r, 8) of the
formula (1.3), the diagonal elements of the normal gravity gradient tensor at the earth
space point in the spherical coordinate system can be obtained:

GM a\2n
Uy = -2 [1 ~ TR+ D@+ 1) (2) ]ZnPZn(cose)] +wsin?d  (1.8)

22U 9 M [ n 2
Ups = g7 = ﬁ =-= [Zn=1 (%) J2n 75 Pan(cos 9)] + w?cos20 (1.9)

Since e, 1 eg, the normal gravity gradient scalar value can be obtained:

Unp = /U3r+U§9 (1.10)

and the north declination angle of the normal gravity gradient direction relative to the
mass center of the Earth can also be obtained:

9p = tan~1288 (1.11)

(4) Low-dgree Legendre function B,(t) and its first and second derivative
algorithms with respect to 6



Lett =cosf, u=siné, (1.12)

then P (t) = Z=tP,_; (£) = = Py, (8) (1.13)
P =t P2=1(3t2—1) (1.14)

S Pa(8) = Rt Py (6) = P (8) — Py, (8) (1.15)
ZPi(t) = —u, = Py(t) = —3ut (1.16)
2Bt =2 (t;—;Pn_l — U Py~ Py ) =P (1.17)
P = —t, 2 Py(0) = 3(1 - 2t?) (1.18)

Calculation formulas of Earth gravity field from geopotential coefficient model
The disturbing potential T or height anomaly { at the space point (r, 8, 1) outside
the Earth can be expressed as the following spherical harmonic series:

GM oo (a\" wn - — . —
T(r,0,0) =y = 72n=2 (;) n —0(6CpmecosmAd + Sy sinmA) By, (2.1)

where C,,,,, S,m are called as the fully normalized Stokes coefficients, also known as the
geopotential coefficients, P, = P,,,(t) is the fully normalized associative Legendre
function, n is called as the degree of the geopotential coefficient, m is called as order of
geopotential coefficients. And

J2n
8Cano = Cono + \/‘ﬁ (2.2)
552n,m = CZn,m(m > 0) 6€2n+1,m = €2n+1,m (23)

The spherical harmonic series of gravity anomaly Ag, gravity disturbance ég,
vertical deflection (¢,7), disturbing gravity gradient T,.. and tangential gravity gradient
(Tyn, Tww) at the space point (r, 8, 1) outside the Earth can be respectively expressed
as:

GM o a\" n = & . )
Ag = r—Zanz(n -1 (;) n—o(8CpmcosmA + Sy, sinmA) By, (2.4)
GM — oo a\" «n - - . _
6g =-T, = —22n=2(n +1) (;) n =0(6CpmcosmA + Sy sinmd) By, (2.5)

— _ . 9 =
g=T0— yr2 My ( ) m=0(6CrymcOSMA + Sy sinmA) = P (2.6)

Ta
yrsm6

n=- - sng" 2( ) Y i m(8Cppsinmd — S,,,cosmA) Py, (2.7)

n — —_ —
T = 2 2+ 1)(n +2) (E) Y _ (8C,mcosmA + Symsinm)By,  (2.8)
1 1
Ty =T + 5 Toe

= ——+—Zn 2( ) _o(8CmcosmA + Spmsinmi) —— (2.9)

692

Tww = —T += TgctgH +5—Ta = ——+ ctg@
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n _ — —
o Yo, (g) n —om2(8CpmcosmAd + Sy sinmA) Py, (2.10)

gE=rr

here, T, = 2T(r,0,4), Ty = —5T(r,0,2) (2.11)
Ty =2T(r,0,0), Tog=3T(r,0,2) (2.12)
T, = 2T(r,0,2), Ty =25T(60,2) (2.13)
T +Tyn +Tww =0, TR+Tin+Tin =0, T,=X7,T" (2.14)

where T;* represents the degree n harmonic component of T,. The N axis points North
and the W axis points West.

Equation (2.14) is the Laplace equation, which can be employed to check the
spatial and spectral domain performance of the geopotential model.

Algorithms of normalized associative Legendre function and its derivative
(1) Standard forward column recursion algorithm for 2, (t) (n<1900)
pnm(t) = anmtpn—l,m (t) - bnmpn—z,m (t) n>1lm<n

B _ (3.1)
Pnn(t) =u ’Zz_rtlpn—l,n—l n>1

_ [@n-1)(@2n+1) b _ [@n+1)(n+m-1)(n-m~-1)
nm = [ rmye-m) * 2 T T @n-3)(itm) (iem)
Pyo(t) =1, Pyo(t) =V3t, Pi1(t) =V3u (3.2)

(2) Improved Belikov recursion algorithm for B,,,(t) (n<64800)
When n = 0,1, P,,,(t) is calculated according to (3.2). And when n22, we have:

Fno(t) = antﬁn—l,o(t) - bn%pn—l,l(t): m=0 (33)

an(t) = Cnmtpn—l,m(t) - dnmuﬁn—l,m+1(t) + enmupn—l,m—l(t)' m>0 (34)

_ |2n+1 _ [2(n-1)(2n+1)
an_\/Zn—l' b"_\l n(zn-1) (3.5)

_1 \/(n+m)(n—m)(2n+1) _ 1 \/(n—m)(n—m—l)(2n+1) (3.6)

n 2n-1 2n 2n—-1

Cnm 4 dnm

here when m>0,

_ 1 ’ 2 (n+m)(n+m-1)(2n+1)
€nm = mn 2—5(7)"_1\/ n—-1 (37)

(3) Cross degree-order recursive algorithm for P,,,, (t) (n<20000)
When n = 0,1, P,,,(t) is calculated according to (3.2). And when n22, we have:

ﬁnm(t) = anmpn—z,m(t) + ﬁnmﬁn—z,m—z (t) - Vnmﬁn,m—z(t) (38)

_ \/ (2n+1)(n-m)(n-m-1)

Unm = || Gn=3)mem)(nem-1)
[ em=2 [@n+1)(n+m-2)(n+m-3)
ﬁnm =v1+ 60 \/ 2n-3)(n+m)(n+m—1) (39)
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o = T [
(4) Non-singular recursive algorithm for %an(cos 0)
Considering that the first derivative of P,,,(cos 8) with respect to 6 is
2 Bun(cos 8) = = Sin 6+ Py () (3.10)

we have

0 = nn+1) = 0 = nn+1) = Jn-1)(n+2) =
20 n0=_,’ > Ppy, ﬁpnl= > Ppo — > Py

(3.11)
0 = J(m+m)(n-m+1) = Jm-m)(n+m+1) =
%an = fpn,m—l - fpn,m+1' m>2
a = o = 9 =
a_gpoo(t) =0, %Pm(t) = —/3y, %Pn(t) =3t (3.12)
2 _
(5) Non-singular recursive algorithm for %an(cos 0)
9% = _n(n+1) 5 ,n(n—l)(n+1)(n+2) =
ﬁPnO_ 2 Pn0+ 8 Pnz (313)
92 = 2n(n+D)+(n-1)(n+2) 5 Jn-2)(n-1D(n+2)(n+3) 5
992 - n1 — T 4 Pnl + 4 Pn3
92 = Jo-m+D)(m-m+2)(n+m-1)(n+m) 5
ﬁpnm - 2 Pn,m—z
m+m)(n-m+1)+(n-m)(n+m+1) ﬁ
- 2 nm
m+m)(n-m+1)+(n-m)(n+m+1) p
- 2 nm
+ \/(n—m—1)(n—m)in+m+1)(n+m+2) ﬁn,m+2, m>2 (314)
62 — 62 _ 62 _
ﬁpoo(t) = 0, Eplo(t) = _'\/§t, ﬁpll(t) = _'\/§u (315)

Boundary value correction for ellipsoid and spherical boundary surface
(1) Ellipsoid correction of gravity. The correction of the gravity g on an ellipsoid
surface outside the Earth from the vertical direction to the normal gravity direction, also
known as the vertical deflection correction of gravity.

2
g, = ysinfcos6 [3]2 (%) + “;31;3] 3 (4.1)

(2) The correction of the gravity g from the normal gravity direction to the geocentric
direction

g, = ye?sinfcosHE (4.2)

(3) The correction of the normal gravity y from the normal gravity direction to the
geocentric direction

g =3y []Zz—:(Bcosze -1) - %sinze] T (4.3)

When the boundary surface is an ellipsoidal surface, only one ellipsoid correction



is required in equation (4.1). When the boundary surface is spherical surface, it is
necessary to perform three items boundary value corrections using equations (4.1) ~
(4.3).
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