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Earth's rotation polar shift effects on geodetic variations 

 and tidal effects on EPR 

The instantaneous Earth's rotation axis is inconsistent with the mean Earth's figure axis, 

which leads to the change of the centrifugal force potential in Earth space with time. The 

variation of the centrifugal force potential excites solid Earth deformation, causing the 

redistribution of the mass inside the Earth and generating the associated geopotential. 

8.6.1 Earth’s rotation polar shift effects on geodetic variations 

The variation of centrifugal force potential in the Earth space caused by the Earth's 

rotation polar shift is the direct influence of the Earth's rotation motion to geopotential 

variation, which can be expressed by the direct influence of the Earth's rotation polar shift 

on the degree-2 tesseral harmonic geopotential coefficient variation ∆𝐶2̅1
𝑑𝑟 + 𝑖Δ𝑆2̅1

𝑑𝑟 . 

Considering the relationship between the long-peroid Love number 𝑘0 and the degree-2 

zonal geopotential coefficient 𝐶2̅0, we have: 

 ∆𝐶2̅1
𝑑𝑟 + 𝑖Δ𝑆2̅1

𝑑𝑟 =
√3

𝑘0
𝐶2̅0(𝑚1 + 𝑖𝑚2) = −

1

√15

𝜔2𝑎3

𝐺𝑀
𝑚 (6.1) 

Where, 𝑚 = 𝑚1 + 𝑖𝑚2 is the complex form of Earth's rotation polar shift (in unit of radian), 

and 𝜔 is the angular rate of Earth's rotation. 

The variation of centrifugal force potential caused by the Earth's rotation polar shift 

furtherly excites the deformation of the solid Earth and produces the associated geopotential, 

which is usually characterized by the degree-2 diurnal body tidal Love number 𝑘21. The 

indirect influence of the centrifugal force potential to the degree-2 tesseral harmonic 

geopotential coefficient is as follows: 

 ∆𝐶2̅1
𝑖𝑛 + 𝑖𝑆2̅1

𝑖𝑛 =
√3𝑘21

𝑘0
𝐶2̅0𝑚 = −

1

√15

𝜔2𝑎3

𝐺𝑀
𝑘21𝑚 (6.2) 

The Earth's rotation polar shift effects on the degree-2 tesseral harmonic geopotential 

coefficient are equal to the sum of the direct effects (non-conservative) and indirect effects 

(conservative) of the centrifugal force potential, that is: 

 ∆𝐶2̅1 + 𝑖∆𝑆2̅1 = (∆𝐶2̅1
𝑑𝑟 + ∆𝐶2̅1

𝑖𝑛) + 𝑖(𝑆2̅1
𝑑𝑟 + 𝑆2̅1

𝑖𝑛) = −
1

√15

𝜔2𝑎3

𝐺𝑀
(1 + 𝑘21)𝑚 (6.3) 

Similar to the solid Earth tidal effect algorithm formulas, The Earth's rotation polar shift 

effect algorithm formulas on various geodetic elements can be obtained. Considering 

𝑃̅𝑛𝑚(𝑐𝑜𝑠𝜃) = √15𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃, the algorithm formula of the Earth's rotation polar shift effect on 

height anomaly at (𝑟, 𝜃, 𝜆) is: 

 Δ𝜁(𝑟, 𝜃, 𝜆) =
𝐺𝑀

𝛾𝑟
(
𝑎

𝑟
)
2
(1 + 𝑘21)(∆𝐶2̅1

𝑑𝑟𝑐𝑜𝑠𝜆 + Δ𝑆2̅1
𝑑𝑟𝑠𝑖𝑛𝜆)𝑃̅21(𝑐𝑜𝑠𝜃)  

 = −
𝜔2𝑎5

2𝛾𝑟3
(1 + 𝑘21)𝑚

∗𝑒𝑖𝜆𝑠𝑖𝑛2𝜃  (6.4) 
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Where, 𝑒𝑖𝜆 = 𝑐𝑜𝑠𝜆 + 𝑖𝑠𝑖𝑛𝜆 and 𝑚∗ = 𝑚1 − 𝑖𝑚2 is the complex conjugate of Earth's rotation 

polar shift 𝑚. 

The algorithm formula of the Earth's rotation polar shift effect on ground gravity is⦿: 

 Δ𝑔𝑠 = −
3

2

𝜔2𝑎5

𝑟4
(1 −

3

2
𝑘21 + ℎ21)𝑚

∗𝑒𝑖𝜆𝑠𝑖𝑛2𝜃 (6.5) 

The algorithm formula of the Earth's rotation polar shift effect on gravity (disturbance) 

outside the solid Earth is: 

 Δ𝑔𝛿 = −
3

2

𝜔2𝑎5

𝑟4
(1 + 𝑘21)𝑚

∗𝑒𝑖𝜆𝑠𝑖𝑛2𝜃  (6.6) 

The algorithm formula of the Earth's rotation polar shift effect on ground tilt is⦿: 

 South: 𝛿𝜉𝑠 = −
𝜔2𝑎5

𝛾𝑟4
(1 + 𝑘21 − ℎ21)𝑚

∗𝑒𝑖𝜆𝑠𝑖𝑛𝜃𝑐𝑜𝑠2𝜃 (6.7) 

 West: 𝛿𝜂𝑠 = −
𝜔2𝑎5

𝛾𝑟4
(1 + 𝑘21 − ℎ21)𝑚

∗𝑒𝑖(𝜆−𝜋/2)𝑐𝑜𝑠𝜃 (6.8) 

The algorithm formula of the Earth's rotation polar shift effect on vertical deflection 

outside the solid Earth is: 

 South: Δ𝜉 = −
𝜔2𝑎5

𝛾𝑟4
(1 + 𝑘21)𝑚

∗𝑒𝑖𝜆𝑠𝑖𝑛𝜃𝑐𝑜𝑠2𝜃 (6.9) 

 West: Δ𝜂 = −
𝜔2𝑎5

𝛾𝑟4
(1 + 𝑘21)𝑚

∗𝑒𝑖(𝜆−𝜋/2)𝑐𝑜𝑠𝜃 (6.10) 

The algorithm formula of the Earth's rotation polar shift effect on ground site 

displacement is⦿: 

 East: ∆𝑒 =
𝜔2𝑎5

𝛾𝑟3
𝑙21𝑚

∗𝑒𝑖(𝜆−𝜋/2)𝑐𝑜𝑠𝜃 (6.11) 

 North: ∆𝑛 =
𝜔2𝑎5

𝛾𝑟3
𝑙21𝑚

∗𝑒𝑖𝜆𝑠𝑖𝑛𝜃𝑐𝑜𝑠2𝜃 (6.12) 

 Radial: ∆𝑟 = −
𝜔2𝑎5

2𝛾𝑟3
ℎ21𝑚

∗𝑒𝑖𝜆𝑠𝑖𝑛2𝜃 (6.13) 

The algorithm formula of the Earth's rotation polar shift effect on gravity gradient outside 

the solid Earth is: 

 Radial: Δ𝑇𝑟𝑟 = −
6𝜔2𝑎5

𝑟5
(1 + 𝑘21)𝑚

∗𝑒𝑖𝜆𝑠𝑖𝑛2𝜃 (6.14) 

 North: Δ𝑇𝑁𝑁 =
2𝜔2𝑎5

𝑟5
(1 + 𝑘21)𝑚

∗𝑒𝑖𝜆𝑠𝑖𝑛2𝜃 (6.15) 

 West: ∆𝑇𝑊𝑊 = −
𝜔2𝑎5

𝑟5
(1 + 𝑘21)𝑚

∗𝑒𝑖𝜆𝑐𝑡𝑔𝜃 (6.16) 

In the above expressions, the Earth's rotation polar shift effects on the geodetic 

variations marked ⦿ are valid only when their sites are fixed with the solid Earth, and that 

on the remaining geodetic variations are suitable on the ground or outside the solid Earth. 



3 

Taking the degree-2 tesseral body-tidal Love number 𝑘21 = 0.3077 + 0.0036𝑖 , ℎ21 =

0.6207 and 𝑙21 = 0.0836, the time series of Earth's rotation polar shift effects on various 

geodetic elements at the ground point P (105.0°E, 32.0°N, H720m) are calculated according 

to formulas (6.4) ~ (6.16) from the IERS Earth orientation parameters (EOP) time series, as 

shown in Fig 6.1. The time span of the time series is from January 2018 to December 2022 

(5 years). In Fig 6.1, the 5-year mean value of the time series of Earth's rotation polar shift 

is removed, and the Earth's rotation polar shift (𝑚1, 𝑚2)  have been converted into the 

Earth's rotation polar coordinate variations (∆𝑥𝑝 = 𝑚1𝑏, ∆𝑦𝑝 = −𝑚2𝑏) (in unit of m) in the 

ITRS (x and y axes in the Earth-fixed rectangular coordinate system). 

 

Fig 6.1 The time series of Earth's roration polar shift effects on various geodetic 

elements at the point P 

 

Fig 6.1 shows that although the Earth's rotation polar shift itself can reach the meter 

level, the resulting effect on geoid or ground normal height is only in mm level, that on ground 

gravity is μGal level, that on radial gravity gradient is 10μE level, that on horizontal geodetic 

elements are small and can be generally ignored. 

8.6.2 Self-consistent equilibrium ocean polar tide effects 

It is generally believed that the ocean polar tide is the manifestation of the centrifugal 

force of rotation polar shift on the ocean, and its main periodic constituents are about 433 

days of Chandler wobble and annual variation. In these long periods, the ocean polar tide 

load is expected to have an equilibrium response, that is, the displacement of the ocean 

surface is expected to be balanced with the equipotential surface acted by the centrifugal 

force. 
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(1) Radial displacement, sea surface height and the rotation polar shift effect on 

geopotential 

Assuming that the centrifugal force of rotation polar shift is 𝛥𝛹𝑐 , the ground radial 

displacement is generated under the action of the radial Love number ℎ2 , and then the 

Earth's rotation polar shift effect on the radial displacement can be expressed as: 

 𝑟𝑝(𝜃, 𝜆, 𝑡) =
ℎ2

𝑔0
𝛥𝛹𝑐 = 𝐻𝑝𝑅𝑒(𝑚

∗(𝑡)ℎ2𝑃̅21(𝑐𝑜𝑠𝜃)𝑒
𝑖𝜆) (6.17) 

 𝐻𝑝 = √
𝐴

𝜌𝑒𝑅

ω2𝑅2

𝐺𝑀
=

√8𝜋

√15

ω2𝑅4

𝐺𝑀
=

√8𝜋

√15

ω2𝑅2

𝑔0
,
8𝜋

5
𝑅4 =

3

𝜌𝑒𝑅
𝐴 (6.18) 

Where, 𝐻𝑝 is the scale factor of the Earth's rotation polar shift effect on radial displacement, 

𝑔0 = 𝐺𝑀/𝑅2 is the mean ground gravity, and 𝐻𝑝 = 0.1385m when the rotation polar shift 

parameter 𝑚(𝑡) is in unit of angular seconds (as or ″). 

Similar to the expression of ocean tidal height, the Earth's rotation polar shift effect 

𝒽𝑜(𝜃, 𝜆, 𝑡)  on sea surface height can be expressed using the ocean spatial admittance 

function 𝑍(𝜃, 𝜆) as follows: 

 𝒽𝑜(𝜃, 𝜆, 𝑡) = 𝐻𝑝𝑅𝑒[𝑚
∗(𝑡)𝑍(𝜃, 𝜆)] (6.19) 

After introducing the scale factor 𝐻𝑝, the ocean admittance function 𝑍(𝜃, 𝜆) becomes a 

normalized (dimensionless) spatial harmonic function, which can be decomposed into the 

spherical harmonic series as follows: 

 𝑍(𝜃, 𝜆) = ∑ 𝑍𝑛(𝜃, 𝜆)
∞
𝑛=0  (6.20) 

The Earth's polar shift effect 𝒽𝑜(𝜃, 𝜆, 𝑡) on sea surface height also associates the re-

adjustment of ocean mass and geopotential variations on sea surface. This is the direct 

influence of sea surface height variation induced by rotation polar shift to the geopotential, 

which can be expressed as: 

 𝑈(𝜃, 𝜆, 𝑡) = ∑ 𝑈𝑛(𝜃, 𝜆, 𝑡) =
∞
𝑛=0 𝐻𝑝𝑔0𝑅𝑒[𝑚

∗(𝑡) ∑ 𝛼𝑛𝑍𝑛(𝜃, 𝜆)
∞
𝑛=0 ] (6.21) 

Here，𝛼𝑛 =
3

2𝑛+1

𝜌𝑤

𝜌𝑒
. 

The direct influence 𝑈𝑛  of geopotential produces the associated potential under the 

action of the load potential Love number 𝑘𝑛
′ , so we have: 

 𝑈𝑜
𝑎(𝜃, 𝜆, 𝑡) = ∑ 𝑘𝑛

′ 𝑈𝑛
∞
𝑛=0 (𝜃, 𝜆, 𝑡) = 𝐻𝑝𝑔0𝑅𝑒[𝑚

∗(𝑡) ∑ 𝑘𝑛
′ 𝛼𝑛𝑍𝑛(𝜃, 𝜆)

∞
𝑛=0 ] (6.22) 

The ocean polar tide effect on the geopotential is equal to the sum of the direct influence 

of sea surface height variation induced by rotation polar shift to geopotential and the 

associated potential, namely 

𝑈𝑜(𝜃, 𝜆, 𝑡) = ∑ (1 + 𝑘𝑛
′ )𝑈𝑛

∞
𝑛=0 (𝜃, 𝜆, 𝑡)  

 = 𝐻𝑝𝑔0𝑅𝑒[𝑚
∗(𝑡) ∑ (1 + 𝑘𝑛

′ )𝛼𝑛𝑍𝑛(𝜃, 𝜆)
∞
𝑛=0 ] (6.23) 

(2) Self-consistent equilibrium ocean polar tide effects on geopotential 

coefficients 
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On the two maximum long-period constituents of the solid Earth tide, the ocean is likely 

to have a long-wave response corresponding to the equilibrium response. As the period 

increases, the deviation of this response from the equilibrium state is smaller. The 

equilibrium ocean polar tide effect assumes that the instantaneous ocean surface is a gravity 

equipotential surface, that is, the instantaneous ocean surface and equipotential surface are 

in an equilibrium state, and then the equilibrium displacement of the ocean surface relative 

to the seabed is determined by subtracting the polar tide effect from the sea equipotential 

surface. 

The equilibrium ocean polar tide admittance function 𝑍̅𝑐 is proportional to the ground 

tilt tidal factor (namely sea surface height tidal factor) 𝛾2 = 1 + 𝑘2 − ℎ2 , which can be 

expressed as the product of the normalized equilibrium admittance function 𝐸̅𝑐 and ground 

tilt tidal factor 𝛾2. 

 𝑍̅𝑐(𝜃, 𝜆) = 𝛾2𝐸̅
𝑐(𝜃, 𝜆) (6.24) 

 𝐸̅𝑐(𝜃, 𝜆) = ∑ 𝐸̅𝑛
𝑐(𝜃, 𝜆)∞

𝑛=0 = 𝒪(𝜃, 𝜆)[𝑃̅21(𝑐𝑜𝑠𝜃)𝑒
𝑖𝜆 + 𝐾𝑐] (6.25) 

Where, 𝒪(𝜃, 𝜆) is an ocean function, 𝒪(𝜃, 𝜆) = 1 when (𝜃, 𝜆) is located in the ocean area, 

and 𝒪(𝜃, 𝜆) = 0 when (𝜃, 𝜆) is located on land. 

The complex constant 𝐾𝑐  is employed in the equation (6.25) to maintain the mass 

conservation of the classical equilibrium ocean polar tide. Assuming that the ocean has a 

constant density, the zero-degree spherical harmonic component of the ocean polar tide 

should be equal to zero, namely 𝑍̅0
𝑐 = 𝐸̅0

𝑐 = 0. 

The self-consistent equilibrium ocean polar tide response function 𝑍̅𝑠(𝜃, 𝜆) after 

considering the rotation polar shift centrifugal potential and its associated potential is also 

proportional to the ground tilt tidal factor 𝛾2 = 1 + 𝑘2 − ℎ2, which can be expressed by the 

normalized self-consistent equilibrium admittance function 𝐸̅𝑠 as: 

 𝑍̅𝑠(𝜃, 𝜆) = 𝛾2𝐸̅
𝑠(𝜃, 𝜆) (6.26) 

 𝐸̅𝑠(𝜃, 𝜆) = ∑ 𝐸̅𝑛
𝑠∞

𝑛=0 = 𝒪(𝜃, 𝜆)[𝑃̅21(𝑐𝑜𝑠𝜃)𝑒
𝑖𝜆 + ∑ 𝛾𝑛

′𝛼𝑛𝐸̅𝑛
𝑠∞

𝑛=0 + 𝐾𝑠] (6.27) 

Where, 𝐾𝑠  is a complex constant, which is employed to maintain the self-consistent 

balance of ocean polar tide mass conservation. 𝛾𝑛
′ = 1 + 𝑘𝑛

′ − ℎ𝑛
′  is the degree-n load tidal 

factor of ground tilt. 

The spherical harmonic components of the normalized admittance functions 𝐸̅𝑛
𝑐 and 𝐸̅𝑛

𝑠 

are defined from the coefficients (𝐴̅𝑛𝑚 + 𝑖𝐵̅𝑛𝑚) as the following spherical harmonic series: 

 𝐸̅(𝜃, 𝜆) = ∑ ∑ 𝑃̅|𝑛|𝑚(𝑐𝑜𝑠𝜃)(𝐴̅𝑛𝑚 + 𝑖𝐵̅𝑛𝑚)𝑒
𝑖𝜆𝑛

𝑚=−𝑛
∞
𝑛=0  （6.28） 

The first and second terms of Equation (6.27) can be considered as the first and second 

terms of the self-consistent equilibrium pole tide, so the normalized admittance can be 

calculated by using the iterative scheme of 𝐸̅𝑛
𝑠 = 𝐸̅𝑛

𝑐 in the first iteration. 

Let 𝐴̅𝑛𝑚 = 𝐴̅𝑛𝑚
𝑅 + 𝑖𝐴̅𝑛𝑚

𝐼 , 𝐵̅𝑛𝑚 = 𝐵̅𝑛𝑚
𝑅 + 𝑖𝐵̅𝑛𝑚

𝐼   be the degree-n order-m ocean polar tide 

load coefficients in self-consistent equilibrium state, then the direct influence of ocean polar 
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tide loads to normalized geopotential coefficients can be expressed by the Earth's rotation 

polar shift parameters (𝑚1, 𝑚2) (Desai, 2002) as follows: 

 [
∆𝐶𝑛̅𝑚
∆𝑆𝑛̅𝑚

] = 𝑅𝑛 {[
𝐴̅𝑛𝑚
𝑅

𝐵̅𝑛𝑚
𝑅 ] (𝑚1𝛾2

𝑅 +𝑚2𝛾2
𝐼) + [

𝐴̅𝑛𝑚
𝐼

𝐵̅𝑛𝑚
𝐼 ] (𝑚2𝛾2

𝑅 −𝑚1𝛾2
𝐼)} (6.29) 

 𝑅𝑛 =
ω2𝑅4

𝐺𝑀

4𝜋𝐺𝜌𝑤

𝑔0(2𝑛+1)
=

ω2𝑅2

𝑔0
2

4𝜋𝐺𝜌𝑤

2𝑛+1
，𝛾2 = 𝛾2

𝑅 + 𝑖𝛾2
𝐼  (6.30) 

Here, from the IERS Earth orientation parameters (EOP) time series and the 360-degree 

self-consistent equilibrium ocean polar tide load coefficient model (Desai, 2002) in IERS 

convertions (2010), the time series of ocean polar tide effects on various geodetic elements 

are calculated at the point P (121.3°E, 28.8°N, H11m) in the coastal zone as shown in Fig 

6.2. The time span of the time series is from January 1,2018 to December 31,2022 (4 years), 

with a time interval of 1 day. Where, the calculation subroutine for formula (6.29) can be 

obtained from the IERS website. 

 

Fig 6.2 Ocean polar tide effect time series on geodetic variations at the point P in the 

coastal zone area 

 

The ocean polar tide effects on geodetic variations are small, which can be ignored for 

general geodetic cases. 

8.6.3 Various tidal effects on the Earth rotation parameters 

(1) Zonal harmonic tidal effects on length of day and Earth's rotation rate 

The response of the solid Earth to the zonal harmonic tidal potential causes the periodic 

variation of the principal moment of inertia, and then the amplitude of the Earth's rotation 

motion is amplified and the scale factor of the rotation rate is changed according to the 

conservation principle of angular momentum. 

The Earth's tidal generating potential 𝑉𝐺 from the celestial body at the ground point P 

(𝜃, 𝜆) can be expanded into a spherical harmonic function series as: 
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 𝑉𝐺(𝑃) = 𝐺𝑀∑
𝑎𝑛

𝑟𝑛+1
∞
𝑛=2 𝑃𝑛(𝑐𝑜𝑠𝜓) (6.31) 

Where, 𝜓 is the geocentric angle distance between the ground point P (𝜃, 𝜆) and celestial 

body (𝑟, 𝛩, 𝛬), and (𝑟, 𝛩, 𝛬) is the spherical coordinates of the celestial body in the Earth-

fixed coordinate system, they all change with time. The degree-2 tidal potential can be 

decomposed into three groups of spherical harmonic functions as follows: 

 𝑉𝐺,20(𝑃) = 𝐺𝑀
𝑎2

𝑟3
𝑃20(𝑐𝑜𝑠𝜃)𝑃20(𝑐𝑜𝑠𝛩) (6.32) 

 𝑉𝐺,21(𝑃) =
1

3
𝐺𝑀

𝑎2

𝑟3
𝑃21(𝑐𝑜𝑠𝜃)𝑃21(𝑐𝑜𝑠𝛩)𝑐𝑜𝑠(𝛬 − 𝜆) (6.33) 

 𝑉𝐺,22(𝑃) =
1

12
𝐺𝑀

𝑎2

𝑟3
𝑃22(𝑐𝑜𝑠𝜃)𝑃22(𝑐𝑜𝑠𝛩)𝑐𝑜𝑠2(𝛬 − 𝜆) (6.34) 

The formulas (6.33) and (6.34) contain the tesseral and sector harmonic functions, 

respectively, to describe the semidiurnal and diurnal variations of short-period tides, while 

the formula (6.32) contains the zonal harmonic function, which only depends on the 

geocentric colatitude 𝛩  of the celestial body and changes slowly, so it is employed to 

describe the medium and long-period tidal waves. 

The main periods of the zonal harmonic tides on the Moon are 14 days 𝑀𝑓 and 28 days 

𝑀𝑚, and the main periods of the zonal harmonic tides from the Sun are semi-annual 𝑆𝑠𝑎 

and annual 𝑆𝑎. These zonal harmonic tides are the largest terms that cause changes in the 

length of day (𝐿𝑂𝐷). 

Considering the frequency dependent corrections of long-period Love number 𝑘20(𝜎) 

from the mantle anelasticity, taking the scale factor 𝑘/𝑐𝑚 = 0. 94 (𝑐𝑚 = 0.293 is the polar 

moment of inertia coefficient of the mantle), the Earth rotation long-period tidal change 

correction algorithm formulas (IERS convertions, 2010) with the periods of 5 days to 18.6 

years are: 

 ∆𝑈𝑇1 = 𝑚3𝛬0 = −∑ (𝐴𝑖𝑠𝑖𝑛𝜙𝑖 − 𝐵𝑖𝑐𝑜𝑠𝜙𝑖)
62
𝑖=1  (6.35) 

 ∆𝐿𝑂𝐷 = ∑ (𝐴𝑖
′𝑐𝑜𝑠𝜙𝑖 − 𝐵𝑖

′𝑠𝑖𝑛𝜙𝑖)
62
𝑖=1  (6.36) 

 ∆𝜔 = ∑ (𝐴𝑖
′′𝑐𝑜𝑠𝜙𝑖 − 𝐵𝑖

′′𝑠𝑖𝑛𝜙𝑖)
62
𝑖=1  (6.37) 

Where, 𝐴𝑖, 𝐵𝑖，𝐴𝑖
′, 𝐵𝑖

′，𝐴𝑖
′′, 𝐵𝑖

′′ are the in-phase amplitude and out-of-phase amplitude of 

the long-period tidal constituent with frequency 𝜎𝑖, respectively, as shown in column 7-12 of 

tab 6.1 (omit the tidal waves with all 6 coefficients less than 1.0), and 𝜙𝑖 is the astronomical 

argument of the long-period constituent 𝜎𝑖 , which is calculated by the basic Delaunay 

variables (columns 1~5 in the tab 6.1) or the Doodson number. 

Tab 6.1 Zonal harmonic tidal effect corrections on length of day and rotation rate 

Delaunay variables Period 

(day) 

∆𝑈𝑇1 ∆𝐿𝑂𝐷 ∆𝜔 

𝑙 𝑙′ 𝐹 𝐷 Ω 𝐴𝑖 𝐵𝑖 𝐴𝑖
′ 𝐵𝑖

′ 𝐴𝑖
′′ 𝐵𝑖

′′ 
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0 0 2 2 2 7.10 -0.1231 0.0000 1.0904 0.0000 -0.9203 0.0000 

1 0 2 0 1 9.12 -0.4108 0.0000 2.8298 0.0000 -2.3884 0.0000 

1 0 2 0 2 9.13 -0.9926 0.0000 6.8291 0.0000 -5.7637 0.0000 

-1 0 2 2 2 9.56 -0.1974 0.0000 1.2978 0.0000 -1.0953 0.0000 

0 0 2 0 0 13.61 -0.2989 0.0000 1.3804 0.0000 -1.1650 0.0000 

0 0 2 0 1 13.63 -3.1873 0.2010 14.6890 0.9266 -12.3974 -0.7820 

0 0 2 0 2 13.66 -7.8468 0.5320 36.0910 2.4469 -30.4606 -2.0652 

2 0 0 0 0 13.78 -0.3384 0.0000 1.5433 0.0000 -1.3025 0.0000 

0 0 0 2 0 14.77 -0.7341 0.0000 3.1240 0.0000 -2.6367 0.0000 

-1 0 2 0 2 27.09 0.4352 0.0000 -1.0093 0.0000 0.8519 0.0000 

1 0 0 0 -1 27.44 0.5339 0.0000 -1.2224 0.0000 1.0317 0.0000 

1 0 0 0 0 27.56 -8.4046 0.2500 19.1647 0.5701 -16.1749 -0.4811 

1 0 0 0 1 27.67 0.5443 0.0000 -1.2360 0.0000 1.0432 0.0000 

-1 0 0 2 0 31.81 -1.8236 0.0000 3.6018 0.0000 -3.0399 0.0000 

0 1 2 -2 2 121.75 -1.8847 0.0000 0.9726 0.0000 -0.8209 0.0000 

0 0 2 -2 1 177.84 1.1703 0.0000 -0.4135 0.0000 0.3490 0.0000 

0 0 2 -2 2 182.62 -49.7174 0.4330 17.1056 0.1490 -14.4370 -0.1257 

0 1 0 0 0 365.26 -15.8887 0.1530 2.7332 0.0263 -2.3068 -0.0222 

0 0 0 0 2 -3399.19 7.8998 0.0000 0.1460 0.0000 -0.1232 0.0000 

0 0 0 0 1 -6798.38 -1617.2681 0.0000 -14.9471 0.0000 12.6153 0.0000 

 

(2) Long-period ocean tidal correction for the Earth's rotation polar shift and 

effective excitation 

The long-period term of the rotation polar shift mainly includes the half-Chandler, semi-

annual, seasonal, month and fortnight period, etc., as well as the quasi-two-year and 300-

day period. The motion equations of the unforced rotation expressed by the effective angular 

momentum function are: 

 𝜒(𝑡) = 𝑚∗(𝑡) +
𝑖

𝜎𝑐
𝑚̇∗(𝑡), 𝜓3(𝑡) = −𝑚3(𝑡) =

𝛥𝐿𝑂𝐷(𝑡)

𝛬0
 (6.38) 

 𝜒(𝑡) = 𝜒1(𝑡) + 𝑖𝜒2(𝑡)，𝑚(𝑡) = 𝑚1(𝑡) + 𝑖𝑚2(𝑡) (6.39) 

 

{
 
 

 
 𝜒1(𝑡) =

1.608

(𝐶−𝐴)𝜔
[ℎ1(𝑡) + (1 + 𝑘2

′ )𝜔𝐼13(𝑡)]

𝜒2(𝑡) =
1.608

(𝐶−𝐴)𝜔
[ℎ2(𝑡) + (1 + 𝑘2

′ )𝜔𝐼23(𝑡)]

𝜒3(𝑡) =
0.997

𝐶𝜔
[ℎ3(𝑡) + 0.750𝜔𝐼33(𝑡)]

 (6.40) 

Here, 𝑚∗(𝑡) is the complex conjugate of 𝑚(𝑡), 𝜎𝑐 is the complex frequency of Chandler's 
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wobble, 𝛬0 = 86400𝑠 is the mean day of length, 𝜒(𝑡) is the effective angular momentum 

(EAM) function of rotation polar shift, 𝒉(𝑡) = [ℎ1(𝑡), ℎ2(𝑡), ℎ3(𝑡)]  is the relative angular 

momentum of matter motion in Earth's interior, 𝐶 and 𝐴 are the main moments of inertia of 

the Earth, and 𝜔 is the mean angular rate of rotation. 

The effective angular momentum function 𝝌(𝑡) = [𝜒1(𝑡), 𝜒2(𝑡), 𝜒3(𝑡)] in Formula (6.40) 

mainly includes two parts: the change ∆𝑰 of inertia tensor caused by the mass redistribution, 

and the change ∆𝒉  of relative angular momentum caused by the velocity of matter 

movement in Earth's interior. Four coefficients are introduced in the formula (6.40), 1.608 is 

the amplitude amplification factor considering the mantle anelasticity and liquid core effect, 

0.750 is the scale factor of the rotation rate change considering the ocean motion friction 

and drag effect of the viscosity of the mantle, 0.997 indicates that the rotation centrifugal 

force reduces the rotation rate by 0.3%. 

Tidal correction algorithm formulas for Earth's rotation polar shift and effective angular 

momentum with the periods of 9 days to 18.6 years are as follows: 

 𝑚∗(𝑡) = 𝑚1(𝑡) − 𝑖𝑚2(𝑡) = 𝐴𝑝𝑒
𝑖[𝜙(𝑡)+𝜑𝑝] + 𝐴𝑟𝑒

𝑖[−𝜙(𝑡)+𝜑𝑟] (6.41) 

 𝜒(𝑡) = 𝜒1(𝑡) + 𝑖𝜒2(𝑡) = 𝐴𝑝𝑒
𝑖[𝜙(𝑡)+𝜑𝑝] + 𝐴𝑟𝑒

𝑖[−𝜙(𝑡)+𝜑𝑟] (6.42) 

Here, 𝜙(𝑡) is the astronomical argument, 𝐴𝑝, 𝜑𝑝 are the prograde harmonic amplitude and 

phase of the long-period ocean tidal effect excited by the rotation polar motion or effective 

angular momentum, respectively, and 𝐴𝑟 , 𝜑𝑟  are the retrograde harmonic amplitude and 

phase of that, respectively. 

Tab 6.2 Long-period ocean tidal correction for the Earth's rotation polar shift and 

effective excitation 

 
Delaunay variables Period 

(day) 

Correction for polar shift 𝑚 Correction for EAM 𝜒 

𝑙 𝑙′ 𝐹 𝐷 Ω 𝐴𝑝μas 𝜑𝑝° 𝐴𝑟μas 𝜑𝑟° 𝐴𝑝μas 𝜑𝑝° 𝐴𝑟μas 𝜑𝑟° 

𝑚𝑡𝑚 1 0 2 0 1 9.12 4.43 -112.62 5.57 21.33 205.83 67.21 269.95 21.17 

𝑀𝑡𝑚 1 0 2 0 2 9.13 10.72 -112.56 13.48 21.3 497.59 67.27 652.59 21.14 

𝑚𝑓 0 0 2 0 1 13.63 27.35 -91.42 30.59 13.31 841.32 88.42 1002.12 13.15 

𝑀𝑓 0 0 2 0 2 13.66 66.09 -91.31 73.86 13.27 2028.73 88.53 2414.94 13.11 

𝑀𝑠𝑓 0 0 0 2 0 14.77 5.94 -87.13 6.42 11.75 168.13 92.7 194.74 11.6 

𝑀𝑚 1 0 0 0 0 27.56 43.74 -56.7 31.12 -0.91 643.61 123.13 520.16 -1.06 

𝑀𝑠𝑚 -1 0 0 2 0 31.81 8.85 -51.11 5.42 -4.21 111.62 128.72 79.23 -4.36 

𝑆𝑠𝑎 0 0 2 -2 2 182.62 86.48 -20.3 99.77 175.57 118.56 159.42 336.32 175.46 

𝑆𝑎 0 1 0 0 0 365.26 17.96 -17.38 152.15 170.6 3.33 161.6 332.53 170.51 

𝑀𝑛 0 0 0 0 1 -6798.38 208.17 166.89 186.98 166.67 221.43 166.88 175.07 166.68 
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Fig 6.3 long-period tidal effect time series for the Earth’s rotation motion from January 1, 

2026 to December 31, 2028 (3years) are predicted according to the formulas (6.35) ~ (6.37), 

(6.41) and (6.42), and the time series sampling interval is 4 hours. 

 

Fig 6.3 Long-period tidal effect time series for the Earth’s rotation motion 

 

(3) Diurnal and semidiurnal ocean tidal effects on the Earth's rotation parameters 

The current view is that the diurnal and semi-diurnal variations of the Earth's rotation are 

mainly the response of the solid Earth to the effects of ocean tides and ocean currents. The 

centrifugal potential variation excites the deformation of solid Earth, resulting in the change 

of Earth's inertia tensor. The Diurnal and semidiurnal moments are mainly from the principal 

inertia difference 𝐵 − 𝐴 of the three-axis Earth (the principal inertial axis coordinate system), 

where 𝐵 is the polar moment of inertia and 𝐴 is the equatorial moment of inertia, then the 

degree-2 sector harmonic non-normalized geopotential coefficient 𝐶22 is: 

 𝐶22 =
1

4
𝑀𝑅2(𝐵 − 𝐴) (6.43) 

In general, the principal axis of the Earth-fixed coordinate system does not coincide with 

the principal axis of inertia of the Earth. At this case, the difference 𝐵 − 𝐴 in the equatorial 

plane becomes: 

 𝐵 − 𝐴 = 4𝑀𝑅2√𝐶22
2 + 𝑆22

2  (6.44) 

and then leads to the rotation polar shift and UT1 variation as: 

 𝑚(𝑡) = −
0.36𝐺𝑀

𝜔2𝑅3

𝐵−𝐴

𝐴
𝑠𝑖𝑛2𝛩𝑒−𝑖(𝛬−2𝜆) (6.45) 

 𝑈𝑇1(𝑡) = −
0.3𝐺𝑀

8𝜔2𝑅3

𝐵−𝐴

𝐶𝑚
𝑠𝑖𝑛2𝛩𝑠𝑖𝑛2(𝛬 − 2𝜆) (6.46) 

Where, 𝛩, 𝛬 are the colatitude and longitude of the tidal celestial body in the Earth-fixed 

coordinate system, respectively. 

It can be seen from the formulas (6.44) ~ (6.46) that 𝐶22  excites the semidiurnal 
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variation of Earth's rotation. The theoretical calculation (Chao et al., 1996) shows that its 

magnitude is about 0.06 mas (1mas of geocentric angle distance is about 3cm away from 

the corresponding ground). 

Similar to the excitation of the ocean tide to the Earth's rotation polar motion and rotation 

rate variation in Formula (6.40), the diurnal and semi-diurnal variations of the Earth's rotation 

excited by the ocean tide can be expressed by the harmonic function series as: 

 𝑚1 = ∑ (−𝐴𝑖
𝑐𝑐𝑜𝑠𝜙𝑖 + 𝐴𝑖

𝑠𝑠𝑖𝑛𝜙𝑖)
𝑛
𝑖=1  (6.47) 

 𝑚2 = ∑ (𝐴𝑖
𝑐𝑠𝑖𝑛𝜙𝑖 + 𝐴𝑖

𝑠𝑐𝑜𝑠𝜙𝑖)
𝑛
𝑖=1  (6.48) 

 ∆𝑈𝑇1 = 𝑚3Λ0 = ∑ (𝐵𝑖
𝑐𝑐𝑜𝑠𝜙𝑖 + 𝐵𝑖

𝑠𝑠𝑖𝑛𝜙𝑖)
𝑛
𝑖=1  (6.49) 

At present, the Eanes2000 model and interp.f fortran code in the IERS convertions (2010) 

are widely employed, which can be obtained from the IERS website. 

 

Fig 6.4 The time series of diurnal and semi-diurnal tidal effects on ERP 

 

Fig 6.4 the time series of diurnal and semi-diurnal tidal effects on Earth's rotation 

parameters from March 1, 2026 to April 30, 2026 (2 months) are predicted according to the 

formulas (6.47) ~ (6.49), and the time series sampling interval is 15 minutes. 

8.6.4 Calculation of CIP instantaneous polar coordinates in ITRS 

According to the IERS convertions (2010), the instantaneous coordinates of the celestial 

intermediate polar (CIP) in the ITRS are expressed in the polar coordinate system, whose 

y-axis direction is opposite to the y-axis direction of the ITRS, denoted as (𝑝1, 𝑝2), and its 

unit and direction are the same as the rotation polar shift (𝑚1, 𝑚2). Since the forced nutation 

of external celestial bodies in GCRS with a period of less than 2 days is not included in the 

IAU2000/IAU2006 nutation model, it is necessary to consider the corresponding motion 

model of the Earth’s rotation pole in ITRS. 

(𝑝1, 𝑝2) is composed of (𝑚1,𝑚2)𝐼𝐸𝑅𝑆 provided by IERS Bulletin A and B, plus ocean 

tides and forced nutation correction terms of external celestial bodies with periods less than 

2 days in GCRS, namely 

 (𝑝1, 𝑝2) = (𝑚1, 𝑚2)𝐼𝐸𝑅𝑆 + (𝑚1, 𝑚2)𝑂𝑇 + (𝑚1, 𝑚2)𝐿𝐼𝐵 (6.50) 

Where, (𝑚1, 𝑚2)𝑂𝑇  are the diurnal and semi-diurnal variations in the rotation polar 

coordinates caused by ocean tides, and (𝑚1, 𝑚2)𝐿𝐼𝐵 are the variations in the rotation polar 
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coordinates corresponding to motions with periods less than two days in space that are not 

part of the IAU 2000 nutation model. 

The high-frequency polar shift term (𝑚1, 𝑚2)𝑂𝑇 mainly includes the diurnal and semi-

diurnal variations caused by the ocean tide, which can be calculated according to the 

formulas (6.47) ~ (6.49). The non-zonal harmonic oscillation terms (𝑚1, 𝑚2)𝐿𝐼𝐵, including 

the forced diurnal and semi-diurnal rotation polar shift terms, was previously regarded as 

nutation and is now classified as the rotation polar shift. The non-harmonic oscillation term 

is due to the diurnal and semi-diurnal terms of the tidal celestial bodies, resulting in the 

change of the Earth’s inertial tensor ∆𝑰 with time, which in turn produces the rotation polar 

shift according to formula (6.1).  

The long-period terms and the long-term changes caused by the torque from tidal 

celestial bodies are generally considered to be included in the observed rotation polar shift 

and do not need to be added to the (𝑚1,𝑚2)𝐼𝐸𝑅𝑆. 

 


