
1 

Theory and algorithm of gravity field approach using spherical radial basis 

functions 

The disturbing potential 𝑇(𝑥) at the point 𝑥 outside the Earth can be expressed as 

a linear combination of normalized surface harmonic basis functions: 

𝑇(𝑥) =
𝐺𝑀

𝑟
∑ (

𝑎

𝑟
)

𝑛
∑ �̅�𝑛𝑚�̅�𝑛𝑚(𝑒)𝑛

𝑚=−𝑛
𝑁
𝑛=2                             （10.1） 

where 𝑥 = 𝑟 ∙ 𝑒 = 𝑟(𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜆, 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜆, 𝑐𝑜𝑠𝜃)   𝑟, 𝜆, 𝜃  are the geocentric distance  

longitude and colatitude of the point 𝑥 outside the Earth  respectively  �̅�𝑛𝑚 are the fully 

normalized Stokes coefficients  also known as the geopotential coefficients  𝐺𝑀, 𝑎 are 

the geocentric gravitational constant and equatorial radius of the Earth  respectively  

called as the scale parameters  and �̅�𝑛𝑚 is the normalized surface harmonic function: 

�̅�𝑛𝑚(𝑒) = �̅�𝑛𝑚(𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝑚𝜆, �̅�𝑛𝑚 = 𝛿�̅�𝑛𝑚, 𝑚 ≥ 0  

�̅�𝑛𝑚(𝑒) = �̅�𝑛|𝑚|(𝑐𝑜𝑠𝜃)𝑠𝑖𝑛|𝑚|𝜆, �̅�𝑛𝑚 = 𝑆�̅�|𝑚|, 𝑚 < 0               （10.2） 

where �̅�𝑛𝑚(𝑐𝑜𝑠𝜃) is the fully normalized associative Legendre function  n is called as 

the degree of the geopotential coefficient  and m is called as order of geopotential 

coefficients. 

The equatorial radius 𝑎 of the Earth in formula (10.1) represents the geopotential 

coefficients defined on the sphere whose radius is equal to the equatorial radius 𝑎 of 

the Earth. If it is replaced by the radius ℛ of the Bjerhammar sphere  the geopotential 

coefficients will be defined on the Bjerhammar spherical surface. In this case  the 

geopotential coefficient �̅�𝑛𝑚 is also converted into �̅�𝑛𝑚 due to the change of the scale 

parameter  and 𝑎𝑛�̅�𝑛𝑚 = ℛ𝑛�̅�𝑛𝑚  the formula (10.1) becomes: 

𝑇(𝑥) =
𝐺𝑀

𝑟
∑ (

ℛ

𝑟
)

𝑛
∑ �̅�𝑛𝑚�̅�𝑛𝑚(𝑒)𝑛

𝑚=−𝑛
𝑁
𝑛=2                            （10.3） 

7.10.1 Spherical radial basis function representation of external disturbing 

potential 

The disturbing potential 𝑇(𝑥)  at any point 𝑥  outside the Earth can also be 

expressed as a linear combination of 𝐾 spherical radial basis functions (SRBFs): 

𝑇(𝑥) =
𝐺𝑀

𝑟
∑ 𝑑𝑘𝛷𝑘(𝑥, 𝑥𝑘)𝐾

𝑘=1                                      （10.4） 

where 𝑥𝑘 = ℛ ∙ 𝑒𝑘 is the SRBF node defined on the Bjerhammar sphere  also known 

as the SRBF center or SRBF pole  𝑑𝑘 is the SRBF coefficient  𝐾 is the number of the 
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SRBF nodes  equal to the number of SRBF coefficients  𝛷𝑘(𝑥, 𝑥𝑘) is the spherical radial 

basis function of the disturbing potential can be abbreviated as 𝛷𝑘(𝑥) = 𝛷𝑘(𝑥, 𝑥𝑘). 

The spherical radial basis function 𝛷𝑘(𝑥, 𝑥𝑘) can be furtherly expanded into the 

Legendre series: 

𝛷𝑘(𝑥, 𝑥𝑘) = ∑ 𝜙𝑛𝑃𝑛(𝜓𝑘)𝑁
𝑛=2 = ∑

2𝑛+1

4𝜋
𝐵𝑛 (

ℛ

𝑟
)

𝑛
𝑃𝑛(𝜓𝑘)𝑁

𝑛=2               （10.5） 

where 𝜙𝑛 is the degree n Legendre coefficient of SRBF  which characterizes the shape 

of SRBF and basically determines the spatial and spectral figures of SRBF  also known 

as the SRBF shape factor. When the spectral domain degree 𝑛  need be not 

emphasized  𝐵𝑛 is also called as the Legendre coefficient of SRBF. 𝜇 = ℛ/𝑟 is also 

called as the bandwidth parameter because it is related to the spectral domain 

bandwidth of the radial basis function 𝛷𝑘(𝑥). 

Substitute the formula (10.5) into (10.4) to get: 

𝑇(𝑥) =
𝐺𝑀

4𝜋𝑟
∑ (2𝑛 + 1)𝐵𝑛 (

ℛ

𝑟
)

𝑛
∑ 𝑑𝑘𝑃𝑛(𝜓𝑘)𝐾

𝑘=1
𝑁
𝑛=2   

=
𝐺𝑀

4𝜋𝑟
∑ 𝑑𝑘

𝐾
𝑘=1 ∑ (2𝑛 + 1)𝐵𝑛 (

ℛ

𝑟
)

𝑛
𝑃𝑛(𝜓𝑘)𝑁

𝑛=2                    （10.6） 

Considering the addition theorem of spherical harmonics: 

𝑃𝑛(𝜓𝑘) = 𝑃𝑛(𝑒, 𝑒𝑘) =
4𝜋

2𝑛+1
∑ �̅�𝑛𝑚(𝑒)�̅�𝑛𝑚(𝑒𝑘)𝑛

𝑚=−𝑛                      （10.7） 

then the formula (10.5) can be written as 

𝑇(𝑥) =
𝐺𝑀

𝑟
∑ 𝐵𝑛 (

ℛ

𝑟
)

𝑛
∑ ∑ 𝑑𝑘�̅�𝑛𝑚(𝑒)�̅�𝑛𝑚(𝑒𝑘)𝐾

𝑘=1
𝑛
𝑚=−𝑛

𝑁
𝑛=2                （10.8） 

Comparing formulas (10.1)  (10.3) and (10.8)  we have: 

�̅�𝑛𝑚 = (
ℛ

𝑎
)

𝑛
�̅�𝑛𝑚 = 𝐵𝑛 (

ℛ

𝑎
)

𝑛
∑ 𝑑𝑘�̅�𝑛𝑚(𝑒𝑘)𝐾

𝑘=1                         （10.9） 

Using formula (10.9)  the geopotential coefficient �̅�𝑛𝑚 can be calculated from the 

spherical radial basis function coefficient 𝑑𝑘. After that  the geopotential coefficient can 

be employed to calculate various anomalous gravity field elements outside the Earth. 

The position  distribution and amount of the SRBF nodes (centers) {𝑥𝑘}  on the 

Bjerhammar sphere are the key indicators for gravity field approach using spherical 

radial basis function  which determine the spatial degrees of freedom (spatial resolution) 

and spatial feature of regional gravity field  like the degree of the global geopotential 

coefficient model. 
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7.10.2 Spherical radial basis functions suitable for gravity field approach 

The radial basis function employed for the gravity field approach must satisfy the 

Laplace equation. Some spherical radial basis kernel function such as the point mass 

kernel function  Poisson kernel function  radial multipole kernel function and Poisson 

wavelet kernel function are all harmonic. 

Let 𝑥 be the calculation point outside the Earth and 𝑥𝑘 be the SRBF center on the 

Bjerhammar sphere 𝛺ℛ. 

(1) The point mass kernel function 

The point mass kernel function is an inverse multiquadric function (IMQ) proposed 

by Hardy (1971)  which is the kernel function of the gravitational potential integral 

formula 𝑉 = 𝐺 ∭
𝑑𝑚

𝐿
  and its analytical expression is: 

𝛷𝐼𝑀𝑄(𝑥, 𝑥𝑘) =
1

𝐿
=

1

|𝑥−𝑥𝑘|
                                        （10.10） 

where 𝐿 is the space distance between 𝑥 and 𝑥𝑘. Since ∆(1/𝐿) = 0  the point mass 

kernel function 𝛷𝐼𝑀𝑄(𝑥, 𝑥𝑘) satisfies the Laplace equation. 

(2) The Poisson kernel function 

The Poisson kernel function is derived from the Poisson integral formula of the 

anomalous gravity field element  and its analytical expression is: 

𝛷𝑃(𝑥, 𝑥𝑘) = −2𝑟
𝜕

𝜕𝑟
(

1

𝐿
) −

1

𝐿
=

𝑟2−𝑟𝑘
2

𝐿3                                 （10.11） 

(3) The radial multipole kernel function 

The analytical expression of the radial multipole kernel function is: 

𝛷𝑅𝑀
𝑚 (𝑥, 𝑥𝑘) =

1

𝑚!
(

𝜕

𝜕𝑟𝑘
)

𝑚 1

𝐿
                                        （10.12） 

where 𝑚 can be called as the order of the radial multipole kernel function  and the zero-

order radial multipole kernel function is the point mass kernel function 𝛷𝐼𝑀𝑄(𝑥, 𝑥𝑘) =

𝛷𝑅𝑀
0 (𝑥, 𝑥𝑘). 

(4) The Poisson wavelet kernel function 

The analytical expression of the Poisson wavelet kernel function is: 

𝛷𝑃𝑊
𝑚 (𝑥, 𝑥𝑘) = 2(𝜒𝑚+1 − 𝜒𝑚), 𝜒𝑚 = (𝑟𝑘

𝜕

𝜕𝑟𝑘
)

𝑚 1

𝐿
                   （10.13） 

The zero-order Poisson wavelet kernel function is the Poisson kernel function 
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𝛷𝑃(𝑥, 𝑥𝑘) = 𝛷𝑃𝑊
0 (𝑥, 𝑥𝑘). 

(5) Calculation of spherical radial basis functions 

The spherical radial basis function analytical expressions (10.10) ~ (10.13) are 

usually expressed in the Legendre series (10.5)  and then calculated according to the 

Legendre expansion to highlight the spectral domain figures of the anomalous gravity 

field element. 

PAGravf4.5 normalizes the Legendre expansion of the spherical radial basis 

function 𝛷𝑘(𝑥, 𝑥𝑘)  and then calculates the spherical radial basis function (SRBF) using 

the normalized Legendre expansion. When dealing with different types of observed field 

elements  the SRBF of various field elements are uniformly divided by the normalization 

coefficient of disturbing potential SRBF to maintain the analytical relationship between 

different types of field elements. 

Let the spherical angular distance 𝜓𝑘 = 0  from 𝑥𝑘  to 𝑥   then 𝑐𝑜𝑠𝜓𝑘 = 1   

𝑃𝑛(𝑐𝑜𝑠𝜓𝑘) = 𝑃𝑛(1) = 1  substitute it into formula (10.5)  we have the general expression 

of the normalization coefficient of disturbing potential SRBF: 

𝛷0 = ∑
2𝑛+1

4𝜋
𝐵𝑛𝜇𝑛𝑁

𝑛=2                                            （10.14） 

The Legendre expansion of the normalized spherical radial basis function of 

disturbing potential (height anomaly) is: 

𝛷𝑘(𝑥, 𝑥𝑘) =
1

Φ0
∑ 𝜙𝑛𝑃𝑛(𝜓𝑘)𝑁

𝑛=2 =
1

Φ0
∑

2𝑛+1

4𝜋
𝐵𝑛𝜇𝑛𝑃𝑛(𝜓𝑘)𝑁

𝑛=2           （10.15） 

The above four forms of disturbing potential SRBF and their corresponding 

Legendre coefficients are shown in Table 2  where the constant factor 4𝜋  in the 

Legendre coefficient 𝐵𝑛 has been removed in advance. 

SRBF 𝛷𝑘(𝑥, 𝑥𝑘) 𝜙𝑛 𝐵𝑛 

Point mass 

kernel 

1

𝐿
=

1

|𝑥−𝑥𝑘|
  𝜇𝑛 

1

2𝑛+1
  

Poisson kernel 

function 

𝑟2−𝑟𝑘
2

𝐿3   (2𝑛 + 1)𝜇𝑛  1 

radial multipole 

kernel 

1

𝑚!
(

𝜕

𝜕𝑟𝑘
)

𝑚 1

𝐿
  𝐶𝑛

𝑚𝜇𝑛−𝑚 (𝑛 ≥ 𝑚) 
𝐶𝑛

𝑚

2𝑛+1
𝜇−𝑚  

Poisson 

wavelet kernel 
2(𝜒𝑚+1 − 𝜒𝑚)  (−𝑛𝑙𝑛𝜇)𝑚(2𝑛 + 1)𝜇𝑛  (−𝑛𝑙𝑛𝜇)𝑚  
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𝜒𝑚 = (𝑟𝑘
𝜕

𝜕𝑟𝑘
)

𝑚 1

𝐿
  

7.10.3 Spherical radial basis function representation for various gravity field 

elements 

According to the definition of the anomalous gravity field element  the spherical 

radial basis function parameterized form for various anomalous gravity field elements 

can be derived from the disturbing potential SRBF series (the rightmost expression) of 

(10.6). 

𝜁(𝑥) =
𝑇

𝛾
=

𝐺𝑀

4𝜋𝑟𝛾
∑ 𝑑𝑘

𝐾
𝑘=1 ∑ (2𝑛 + 1)𝐵𝑛 (

ℛ

𝑟
)

𝑛
𝑃𝑛(𝜓𝑘)⬚

𝑛                  （10.16） 

𝛿𝑔(𝑥) = −
𝜕𝑇

𝜕𝑟
=

𝐺𝑀

4𝜋𝑟2
∑ 𝑑𝑘

𝐾
𝑘=1 ∑ (2𝑛 + 1)(𝑛 + 1)𝐵𝑛 (

ℛ

𝑟
)

𝑛−1
𝑃𝑛(𝜓𝑘)⬚

𝑛      （10.17） 

∆𝑔(𝑥) = −
𝜕𝑇

𝜕𝑟
−

2𝑇

𝑟
=

𝐺𝑀

4𝜋𝑟2
∑ 𝑑𝑘

𝐾
𝑘=1 ∑ (2𝑛 + 1)(𝑛 − 1)𝐵𝑛 (

ℛ

𝑟
)

𝑛−1
𝑃𝑛(𝜓𝑘)⬚

𝑛  （10.18） 

𝜉(𝑥) =
𝐺𝑀

4𝜋𝑟2𝛾
∑ 𝑑𝑘

𝐾
𝑘=1 𝑐𝑜𝑠𝛼𝑘 ∑ (2𝑛 + 1)𝐵𝑛 (

ℛ

𝑟
)

𝑛 𝜕𝑃𝑛(𝜓𝑘)

𝜕𝜓𝑘

⬚
𝑛               （10.19） 

𝜂(𝑥) =
𝐺𝑀

4𝜋𝑟2𝛾
∑ 𝑑𝑘

𝐾
𝑘=1 𝑠𝑖𝑛𝛼𝑘 ∑ (2𝑛 + 1)𝐵𝑛 (

ℛ

𝑟
)

𝑛 𝜕𝑃𝑛(𝜓𝑘)

𝜕𝜓𝑘

⬚
𝑛               （10.20） 

𝑇𝑟𝑟(𝑥) =
𝐺𝑀

4𝜋𝑟3
∑ 𝑑𝑘

𝐾
𝑘=1 ∑ (2𝑛 + 1)(𝑛 + 1)(𝑛 + 2)𝐵𝑛 (

ℛ

𝑟
)

𝑛−1
𝑃𝑛(𝜓𝑘)⬚

𝑛     （10.21） 

where 𝛼𝑘 is the geodetic azimuth of 𝜓𝑘. 

For the regional gravity field approach  the reference geopotential model (such as 

the EGM2008 model) is usually employed to remove the reference model value from 

the observed anomalous field element  and the residual gravity field is refined by the 

observed residual field element. 

In this case  the minimum and maximum degree range in formulas (10.16) ~ (10.21) 

(the spectral bandwidth of the gravity field) is closely related to the selected reference 

geopotential model and the feature of regional gravity field in the target area  which can 

only be determined after verifying and analysis from actual observations. 

7.10.4 Spherical Reuter grid construction and SRBF nodes design 

PAGravf4.5 adopts the global and regional consistent spherical Reuter grid  

constructs the spherical radial basis function SRBF centers according to the given 

Reuter grid level  and then using the adaptive algorithm  make the spatial distribution of 
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SRBF nodes be consistent with the spatial distribution of observations everywhere. 

(1) Unit spherical Reuter grid construction algorithm 

Given the Reuter grid level 𝑄 (even number)  the geocentric latitude interval 𝑑𝜑 

of the unit spherical Reuter grid in the spherical coordinate system and the geocentric 

latitude 𝜑𝑖 of the center of the cell-grid 𝑖 are respectively 

𝑑𝜑 =
𝜋

𝑄
, 𝜑𝑖 = −

𝜋

2
+ (𝑖 −

1

2
) 𝑑𝜑, 1 ≤ 𝑖 < 𝑄                      （10.22） 

The cell-grid number 𝐽𝑖  in the prime vertical circle direction at latitude 𝜑𝑖   the 

longitude interval 𝑑𝜆𝑖 and the side length 𝑑𝑙𝑖 are respectively 

𝐽𝑖 = [
2𝜋𝑐𝑜𝑠𝜑𝑖

𝑑𝜑
] , 𝑑𝜆𝑖 =

2𝜋

𝐽𝑖
, 𝑑𝑙𝑖 = 𝑑𝜆𝑖𝑐𝑜𝑠𝜑𝑖                       （10.23） 

It is not difficult to find that 𝑑𝑙𝑖 ≈ 𝑑𝜑. Let 

𝜀𝑖 =
𝑑𝑠𝑖−𝑑𝑠

𝑑𝑠
=

𝑑𝑙𝑖−𝑑𝜑

𝑑𝜑
=

𝑑𝜆𝑖

𝑑𝜑
𝑐𝑜𝑠𝜑𝑖 − 1                             （10.24） 

where 𝑑𝑠 is the cell-grid area near the equator  𝑑𝑠𝑖 is the cell-grid area at the prime 

vertical circle 𝜑𝑖   and 𝜀𝑖  is the relative deviation of the parallel circle cell-grid area 

relative to the cell-grid area near the equator. 

𝜀𝑖 is generally small  about a few ten-thousandth  and the value is related to the 

Reuter grid level 𝑄. Near the equator  we have 𝑑𝑠 = 𝑑𝜑 ∙ 𝑑𝜑  𝜀𝑄/2 = 0. 

Given the latitude and longitude range of the local area  you can directly determine 

the minimum and maximum value of 𝑖  according to the formula (10.22)  and then 

calculate the maximum 𝐽𝑖 at each prime vertical circle according to the formula (10.23)  

to determine the regional Reuter grid whose level is Q without calculating the global grid. 

(2) Regional SRBF nodes design with adaptive observation distribution 

PAGravf4.5 presents a simple Reuter grid fitting algorithm to design the SRBF 

centers that adapts to the spatial distribution of observations. Firstly  construct a regional 

Reuter grid from the given level Q  and then count the number 𝐽  of effective 

observations in each cell Reuter grid. When 𝐽 is less than a given number (as the input 

parameter)  eliminate the SRBF center. After traversing all cell Reuter grids  generate 

the SRBF center set that adapts to the spatial distribution of observations. 

Obviously  when the observations data are a regular grid  the SRBF centers are 

also regularly distributed  and when the observations are irregularly distributed  the 
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SRBF centers are also irregularly distributed. The denser the distribution of observations  

the denser the distribution of SRBF centers. That is  the spatial distribution of SRBF 

centers is consistent with the spatial distribution of observations everywhere. 

7.10.5 SRBF coefficients estimation and gravity field approach 

After the constant 𝐺𝑀/(4𝜋) removed  it does not change the analytical relationship 

between the anomalous gravity field elements. Therefore  formulas (10.16) ~ (10.21) 

are rewritten as: 

𝜁(𝑥) =
1

𝑟𝛾
∑ 𝑑𝑘

𝐾
𝑘=1 ∑ (2𝑛 + 1)𝐵𝑛𝜇𝑛𝑃𝑛(𝜓𝑘)⬚

𝑛                          （10.25） 

𝛿𝑔(𝑥) =
1

𝑟2
∑ 𝑑𝑘

𝐾
𝑘=1 ∑ (2𝑛 + 1)(𝑛 + 1)𝐵𝑛𝜇𝑛−1𝑃𝑛(𝜓𝑘)⬚

𝑛                （10.26） 

∆𝑔(𝑥) =
1

𝑟2
∑ 𝑑𝑘

𝐾
𝑘=1 ∑ (2𝑛 + 1)(𝑛 − 1)𝐵𝑛𝜇𝑛−1𝑃𝑛(𝜓𝑘)⬚

𝑛                 （10.27） 

𝜉(𝑥) =
1

𝑟2𝛾
∑ 𝑑𝑘

𝐾
𝑘=1 𝑐𝑜𝑠𝛼𝑘 ∑ (2𝑛 + 1)𝐵𝑛𝜇𝑛 𝜕𝑃𝑛(𝜓𝑘)

𝜕𝜓𝑘

⬚
𝑛                    （10.28） 

𝜂(𝑥) =
1

𝑟2𝛾
∑ 𝑑𝑘

𝐾
𝑘=1 𝑠𝑖𝑛𝛼𝑘 ∑ (2𝑛 + 1)𝐵𝑛𝜇𝑛 𝜕𝑃𝑛(𝜓𝑘)

𝜕𝜓𝑘

⬚
𝑛                    （10.29） 

𝑇𝑟𝑟(𝑥) =
1

𝑟3
∑ 𝑑𝑘

𝐾
𝑘=1 ∑ (2𝑛 + 1)(𝑛 + 1)(𝑛 + 2)𝐵𝑛𝜇𝑛−1𝑃𝑛(𝜓𝑘)⬚

𝑛         （10.30） 

Substituting the Legendre coefficient 𝐵𝑛 in Table 2 into the above equations  we 

can obtain the basic observation equations for regional gravity field approach with the 

(residual) anomalous gravity field element 𝐹(𝑥𝑖)  as the observations and the SRBF 

coefficients {𝑑𝑘} as the unknowns. 

𝐿 = {𝐹(𝑥𝑖)}𝑇 = 𝐴{𝑑𝑘}𝑇 + 𝑒 (𝑖 = 1, ⋯ , 𝑀, 𝑘 = 1, ⋯ , 𝐾)             （10.31） 

where 𝐴 is the 𝑀 × 𝐾 design matrix  𝑒 is the 𝑀 × 1 observation error vector  𝑀 is 

the number of observations  𝐾 is the number of RBF centers  that is  the number of 

unknowns {𝑑𝑘}  and 𝑥𝑖 is the position of the observations. 

PAGravf4.5 proposes an algorithm that can improve the performance of parameter 

estimation by suppressing edge effect. When the RBF center 𝑣 is located at the margin 

of the calculation area  its corresponding SRBF coefficient is set to zero  that is  𝑑𝑣 = 0 

as the observation equation to suppress the edge effect. The normal equation with the 

additional suppression of edge effect constructed by PAGravf4.5 is: 

[𝐴𝑇𝑃𝐴 + 𝜖𝛯]{𝑑𝑘}𝑇 = 𝐴𝑇𝑃𝐿                                     （10.32） 
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where 𝛯 is a diagonal matrix  whose element is equal to 1 only when the SRBF center 

corresponding to its subscript is in the margin of the area  and the others are zero. 𝜖 is 

equal to the diagonal standard deviation of the matrix 𝐴𝑇𝑃𝐴. 

In PAGravf4.5  The action distance 𝑑𝑟 of all SRBF centers is required to be equal 

to maintain the spatial consistency of the approach performance of gravity field. Where 

𝑑𝑟 corresponds to the domain of the SRBF argument  so any observation is a linear 

combination of the spherical radial basis functions of the SRBF centers only within the 

radius 𝑑𝑟. 

PAGravf4.5 improves the ill-conditioned or singularity of 𝐴𝑇𝑃𝐴  by adding some 

observation equations that can suppresses edge effect to improve the stability and 

reliability of parameter estimation  to instead of the regularization of the normal equation 

without geophysical meaning. 

You can choose the LU triangular decomposition (square root method)  Cholesky 

decomposition or unknowns smallest norm method to solve the normal equation (10.32). 

7.10.6 Regional gravity field modelling from various heterogeneous 

observations by SRBF 

It has always been a hot and difficult issue in physical geodesy to combine various 

types of observations to model the regional gravity field. Like the surface harmonic 

coefficient expansion of anomalous gravity field elements  various types of observations 

can be represented by spherical radial basis function expansion  such as equations 

(10.25) ~ (10.30). Estimating the spherical radial basis function coefficients with 

equations (10.25) ~ (10.30) as observation equations  we can model gravity field from 

various types of observations. 

(1) The crucial issues of gravity field modelling using spherical radial basis function 

from various types of observations 

The regional gravity field modelling from various heterogeneous observations by 

SRBF need deal with three crucial issues  namely ① The SRBF representations from 

various types of observations should strictly keep the analytical relationship between 

different types of observations. ② How to determine the contribution of different types 

of observations to the SRBF coefficients {𝑑𝑘} . ③ Investigate the spectral center & 

bandwidth of target field element  observations and SRBF  and then study the 
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relationship between the three. 

For the first issue  only the SRBF Legendre expansion of height anomaly is 

normalized  and the SRBF Legendre expansion of other types of observations are 

divided all by the SRBF normalization coefficient of height anomaly. In this way  the 

analytical relationships can be strictly maintained between different types of 

observations. 

The way to deal with the second issue is to construct observation equations and 

normal equations from different types of observations firstly  introduce some parameters 

related to the error or spatial distribution of observations  and then combine these 

normal equations to form a new normal equation. 

The third issue is related to the observation situations  the nature of gravity field 

and the modelling algorithm. The spectral center and bandwidth of the observations  

target field elements and SRBFs need be comprehensively analyzed in different 

parameter combinations case  and then according to the principle of fully resolving the 

spectrum of the target field elements  optimize the relevant scheme and parameters. 

(2) Observation contribution adjustment  edge effect suppression and Parameter 

estimation 

PAGravf4.5 recommends a universal multi-source heterogeneous observation 

deep fusion method by the normalization of the normal equations and adjust the 

contribution of the given type of observations at the same time. The normal equation is: 

∑ (
1

𝜀𝑖
𝐴𝑖

𝑇𝑃𝑖𝐴𝑖)
𝑖≠𝑗
𝑖 +

𝜅2

𝜀𝑗
𝐴𝑗

𝑇𝑃𝑗𝐴𝑗 + 𝜖𝛯{𝑑𝑘}𝑇 = ∑ (
1

𝜀𝑖
𝐴𝑖

𝑇𝑃𝑖𝐿𝑖)
𝑖≠𝑗
𝑖 +

𝜅2

𝜀𝑗
𝐴𝑗

𝑇𝑃𝑗𝐿𝑗   （10.33） 

where 𝜀𝑗 is the combination parameter for the given type of adjustable observations  𝜀𝑖 

is the combination parameter of the 𝑖 (𝑖 ≠ 𝑗)  observations  and 𝜅  is the contribution 

rate of the adjustable observations 𝑗. 

PAGravf4.5 multiplies the normal equation coefficient matrix 𝐴𝑗
𝑇𝑃𝑗𝐴𝑗 and constant 

matrix 𝐴𝑗
𝑇𝑃𝑗𝐿𝑗 of the adjustable observation 𝑗 by 𝜅2 respectively  to increase (𝜅 > 1) 

or decrease (𝜅 < 1) the contribution of the adjustable observation. 

For example  the GNSS-levelling residual height anomaly in the observations can 

be set as the adjustable observations with the contribution rate 𝜅 > 1 to improve the 

analytical fusion of GNSS-levelling and other observations. For another example  let the 
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nearshore altimetric elements adjustable with the contribution rate 𝜅 < 1   we can 

suppress the influence of the shallow water altimetric errors and improve the separation 

of sea surface topography. 

The above normalization method of the normal equations can effectively control the 

deep fusion of different types of observations using covariance structure to approach 

gravity field from heterogeneous observation field elements. This method completely 

separates the contribution of the observation system model (covariance structure) and 

influences of observation quality (errors or gross errors)  so that the fusions are away 

from the observation errors (gross error)  observation types and spatial distribution 

differences of measurement points. Which is conducive to the fusion of multiple types 

of observation field elements with extreme differences in spatial distribution (such as 

very few astronomical vertical deflection or GNSS levelling data included)  and is 

conducive to the exact detection of observation gross errors. 

In this case  the normal equation does not also need to be iteratively calculated  

which conducive to improve the analytical nature of the SRBF approach algorithm. 

(3) The cumulative SRBF approach method to achieve the best approach of the 

gravity field 

The target field elements are equal to the convolution of the observations and the 

filter SRBFs. When the target field elements and the observations are of different types  

it is difficult for one SRBF to match the spectral center and bandwidth of the observations 

and target field elements at the same time  which would make the spectral leakage of 

the target field elements. In addition  the SRBF type  the minimum and maximum degree 

of Legendre expansion and the SRBF center distribution also all affect the approach 

performance of gravity field. Therefore  only the optimal estimation of the SRBF 

coefficient with the burial depth as the parameter is not enough to ensure the best 

approach of gravity field. 

PAGravf4.5 proposes a cumulative SRBF approach scheme according to the linear 

additivity of gravity field to solve the key troubles mentioned. Using the multiple 

cumulative SRBF approach  it is not necessary to determine the optimal burial depth. 

When each SRBF approach of gravity field employs a SRBF with different spectral 

figure  the cumulative SRBF approach can fully resolve the spectral domain signal of 
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the target field elements by combining multiple SRBF spectral centers and bandwidths  

and then optimally restore the target field elements in space domain. 

The character of cumulative SRBF approach scheme of gravity field: the essence 

of each SRBF approach is to employ the previous approach results as the reference 

field  and then refine the residual target field elements by remove -restore scheme. 

The validity principle of once SRBF approach: (1) The residual target field element 

grid is continuous and differentiable (view the drawing)  and whose standard deviation 

is as small as possible. (2) The statistical mean of residuals tends to zero with the 

increase of cumulative approach times  and there is no obvious reverse sign. 

🌏 The typical technical features of SRBF approach program in PAGrav4.5 

① The analytical function relationships between gravity field elements are strict  

and the SRBF approach performance has nothing to do with the observation errors.  

② Various heterogeneous observations in the different altitudes  cross-distribution  

and land-sea coexisting cases can be directly employed to model the all-element gravity 

field models on or outisde the geoid without reduction  continuation and griding.  

③ Can integrate very few astronomical vertical deflection or GNSS-levelling data  

and effectively absorb the edge effect.  

④ Has the strong capacity in the detection of observation gross errors  

measurement of external accuracy indexes and control of computational performance. 

 

 

 

 


