Geophysical models and numerical standards in ETideLoad4.5

ETideLoad4.5 is mainly based on the geophysical models and numerical standards recommended by IERS Conventions (2010). You can update them from the program [geophysical models and numerical standards settings]. These geophysical models and numerical standards are stored in file form.

7.4.1 The surface atmosphere tidal load spherical harmonic coefficient model file

The 360-degree surface atmosphere tidal load spherical harmonic coefficient model file ECMWF2006.dat is stored in the folder C:\ETideLoad4.5_win64en\iers in FES2004 format, which were constructed by the spherical harmonic analysis programs of ETideLoad4.5 using $0.5^{\circ} \times 0.5^{\circ}$ global harmonic parameter grids of four atmospheric tidal constituents, to meet the basic needs of centimeter-level geodesy. The four tidal constituents are respectively the diurnal, semi-diurnal, semi-annual and annual periodic tidal constituents (S_1 , S_2 , S_s_a , Sa) whose harmonic parameter grids come from ECMWF-DCDA2006 of European Centre for Medium-Range Weather Forecasts.

😑 ECI	AVF2006. dat 🗵											
1	Atmospher	ic tid	le mode	el:	ECMWF-DCDA2006	normalized mod	del up to (360,	,360) in hPa				
2	半日/周日	/半年/	年周期	9								
3	Doodson	Darw	n	m	Csin+	Ccos+	Csin-	Ccos-	C+	eps+	C-	eps-
4	164.556	S 1	1	0	-0.01055351	0.00555959	-0.01055351	0.00555959	0.01192835	297.7803	0.01192835	297.7803
5	164.556	S 1	2	0	-0.00898730	0.02713172	-0.00898730	0.02713172	0.02858149	341.6727	0.02858149	341.6727
6	164.556	S 1	3	0	0.02416514	0.01232573	0.02416514	0.01232573	0.02712707	62.9756	0.02712707	62.9756
7	164.556	S 1	4	0	0.01971779	-0.01808456	0.01971779	-0.01808456	0.02675523	132.5261	0.02675523	132.5261
8	164.556	S 1	5	0	0.00538826	-0.01556217	0.00538826	-0.01556217	0.01646859	160.9021	0.01646859	160.9021
9	164.556	S 1	6	0	-0.01896560	-0.00055330	-0.01896560	-0.00055330	0.01897366	268.3289	0.01897366	268.3289
10	164.556	S 1	7	0	0.00163224	0.00711629	0.00163224	0.00711629	0.00730108	12.9183	0.00730108	12.9183
11	164.556	S 1	8	0	0.00341644	0.00607435	0.00341644	0.00607435	0.00696920	29.3550	0.00696920	29.3550
12	164.556	S 1	9	0	-0.00469730	-0.00311697	-0.00469730	-0.00311697	0.00563739	236.4331	0.00563739	236.4331
13	164.556	S1	10	0	0.00442735	-0.01563001	0.00442735	-0.01563001	0.01624496	164.1847	0.01624496	164.1847
14	164.556	S 1	11	0	0.00941838	-0.00082619	0.00941838	-0.00082619	0.00945455	95.0132	0.00945455	95.0132
15	164.556	S 1	12	0	-0.00454013	0.00688423	-0.00454013	0.00688423	0.00824654	326.5953	0.00824654	326.5953
16	164.556	S 1	13	0	-0.01227672	0.00310149	-0.01227672	0.00310149	0.01266243	284.1781	0.01266243	284.1781
17	164.556	S 1	14	0	0.00203678	0.00166923	0.00203678	0.00166923	0.00263340	50.6638	0.00263340	50.6638
18	164.556	S 1	15	0	0.00253994	0.00381849	0.00253994	0.00381849	0.00458608	33.6306	0.00458608	33.6306
19	164.556	S 1	16	0	0.00613602	-0.00041704	0.00613602	-0.00041704	0.00615017	93.8882	0.00615017	93.8882
20	164.556	S1	17	0	-0.00113104	-0.00413462	-0.00113104	-0.00413462	0.00428652	195.2992	0.00428652	195.2992
21	164.556	S 1	18	0	-0.00311700	0.00136741	-0.00311700	0.00136741	0.00340375	293.6868	0.00340375	293.6868
22	164.556	S 1	19	0	-0.00217138	0.00053937	-0.00217138	0.00053937	0.00223737	283.9498	0.00223737	283.9498
23	164.556	S 1	20	0	-0.00017645	0.00369644	-0.00017645	0.00369644	0.00370065	357.2671	0.00370065	357.2671
24	164.556	S 1	21	0	0.00068441	-0.00165216	0.00068441	-0.00165216	0.00178831	157.4980	0.00178831	157.4980
25	164.556	S 1	22	0	0.00100221	-0.00214635	0.00100221	-0.00214635	0.00236881	154.9703	0.00236881	154.9703
26	164.556	S 1	23	0	0.00461395	-0.00179653	0.00461395	-0.00179653	0.00495136	111.2744	0.00495136	111.2744
27	164.556	S1	24	0	-0.00143873	0.00014453	-0.00143873	0.00014453	0.00144597	275.7366	0.00144597	275.7366
28	164.556	S 1	25	0	-0.00083151	-0.00001238	-0.00083151	-0.00001238	0.00083160	269.1470	0.00083160	269.1470
29	164.556	S 1	26	0	-0.00272792	-0.00095240	-0.00272792	-0.00095240	0.00288940	250.7543	0.00288940	250.7543
30	164.556	S 1	27	0	-0.00183890	0.00217563	-0.00183890	0.00217563	0.00284868	319.7946	0.00284868	319.7946

In ECMWF-DCDA2006 model, the diurnal and semidiurnal constituents (S_1, S_2) of atmospheric pressure can constitute RP03 model.

The surface atmosphere tides, their tidal constituent harmonic parameters and tidal load spherical harmonic coefficients are all in hPa or mbar as unit.

7.4.2 The ocean tidal load spherical harmonic coefficient model file

The 100-degree ocean tidal load spherical harmonic coefficient model file FES2004S1.dat is stored in the folder C:\ETideLoad4.5_win64en\iers in FES2004 format. The relationship between the ocean tidal load normalized spherical harmonic coefficients and the geopotential coefficients is as the formula (6.15) in the IERS Conventions (2010).

😑 ECN	WF2006. dat 🗵	📄 FES200	4S1. dat 🗵								
1	Ocean tide	e model:	FES2004	norma	lized model	L (fev. 2004)	up to (100,100) i	in cm		
2	(long peri	lod from	FES2002	up to	(50,50) +	equilibrium	Om1/Om2,	atmospher	ric tide	NOT inc	luded)
3	Doodson Da	arw n	m C	sin+	Ccos+	Csin-	Ccos-	C+	eps+	C-	eps-
4	55.565 C	Dm1 2	0 -0.5	40594	0.000000	0.000000	0.000000	0.5406	270.000	0.0000	0.000
5	55.575 C	Dm2 2	0 -0.0	05218	0.000000	0.000000	0.000000	0.0052	270.000	0.0000	0.000
6	56.554 8	Sa 1	0 0.0	17233	0.000013	0.000000	0.000000	0.0172	89.957	0.0000	0.000
7	56.554 \$	Sa 2	0 -0.0	46604	-0.000903	0.000000	0.000000	0.0466	268.890	0.0000	0.000
8	56.554 \$	3a 3	0 -0.0	0889	0.000049	0.000000	0.000000	0.0009	273.155	0.0000	0.000
9	56.554 5	Sa 4	0 0.0	12069	-0.000413	0.000000	0.000000	0.0121	91.960	0.0000	0.000
10	56.554 5	3a 5	0 -0.0	09780	-0.000421	0.000000	0.000000	0.0098	267.535	0.0000	0.000
11	56.554 8	Sa 6	0 0.0	06895	0.000043	0.000000	0.000000	0.0069	89.643	0.0000	0.000
12	56.554 8	Sa 7	0 -0.0	10515	-0.000287	0.000000	0.000000	0.0105	268.437	0.0000	0.000
13	56.554 \$	Sa 8	0 0.0	02067	-0.000011	0.000000	0.000000	0.0021	90.305	0.0000	0.000
14	56.554 \$	Sa 9	0 -0.0	04236	-0.000110	0.000000	0.000000	0.0042	268.512	0.0000	0.000
15	56.554 5	3a 10	0 -0.0	01781	-0.000085	0.000000	0.000000	0.0018	267.268	0.0000	0.000
16	56.554 5	3a 11	0 -0.0	01372	-0.000068	0.000000	0.000000	0.0014	267.163	0.0000	0.000
17	56.554 8	Sa 12	0 -0.0	04081	-0.000048	0.000000	0.000000	0.0041	269.326	0.0000	0.000
18	56.554 8	3a 13	0 -0.0	00116	-0.000041	0.000000	0.000000	0.0001	250.534	0.0000	0.000
19	56.554 \$	Sa 14	0 -0.0	03043	-0.000007	0.000000	0.000000	0.0030	269.868	0.0000	0.000
20	56.554 \$	Sa 15	0 0.0	01109	-0.000028	0.000000	0.000000	0.0011	91.446	0.0000	0.000
21	56.554 5	3a 16	0 -0.0	02596	-0.000034	0.000000	0.000000	0.0026	269.250	0.0000	0.000
22	56.554 5	3a 17	0 -0.0	0674	0.000022	0.000000	0.000000	0.0007	271.870	0.0000	0.000
23	56.554 8	Sa 18	0 0.0	00546	0.000006	0.000000	0.000000	0.0005	89.370	0.0000	0.000
24	56.554 8	Sa 19	0 -0.0	00024	0.000023	0.000000	0.000000	0.0000	313.781	0.0000	0.000
25	56.554 8	Sa 20	0 0.0	0867	0.000014	0.000000	0.000000	0.0009	89.075	0.0000	0.000

In order to meet the basic needs of satellite, coastal zone and ocean gravity gradient data processing, we adopted AVISO+'s FES2014b global tidal height harmonic parameters grid models to construct the 360-degree ocean tidal height spherical harmonic coefficient model file FES2014cs.dat in FES2004 format by the spherical harmonic analysis programs of ETideLoad4.5.

FES2014cs.dat includes spherical harmonic coefficients of the 36 tidal constituents (Ω 1, Ω 2; 2N2, Eps2, J1, K1, K2, L2, La2, M2, M3, M4, M6, M8, Mf, MKS2, Mm, MN4, MS4, MSf, MSqm, Mtm, Mu2, N2, N4, Nu2, O1, P1, Q1, R2, S1, S2, S4, Sa, Ssa, T2), in which the spherical harmonic coefficients of the two balance tidal constituents (Ω 1, Ω 2) come from FES2004S1.dat.

The ocean tidal height, harmonic parameters of the tidal constituent and tidal load spherical harmonic coefficients are all in cm as unit.

7.4.3 The Earth's Load Love number file

The Earth's load Love numbers also called the load deformation coefficients (LDC) can be calculated using the spherically symmetric non-rotating elastic earth model REF6371. The Load Love numbers in ETideLoad4.5 come from a Regional ElAstic Rebound calculator (REAR1.0, 2015.11), using the file Love_load_cm.dat stored in the folder C:\ETideLoad4.5_win64en\iers. The file includes the load Love numbers of the radial displacement, horizontal displacement and geopotential $(h'_n, l'_n, k'_n), n = 1, \dots, 32768$ from 1 to 32768 degree, as shown in the figure.

In order to suppress the high-degree oscillations of the load Green's function, the load Green's function is calculated to 54000 degrees in ETideLoad, and the load Love numbers exceeding 32768 degrees (n>32768) are calculated with the following asymptotic formula

 $h'_n = -6.209114, \ l'_n = 1.890061/n, \ k'_n = -2.682697/n.$

🔚 Love	e_load_cm.	dat 🔀										
1	The lo	ad Lo	ve numbe	rs from	n the R	EAR pacl	cage	are at	tached	. The	re are	no
2	more o	f the	ese oscil	lations	s at hi	gh degre	ee, a	nd the	y go u	p to	degree	32768.
3	Novemb	er 20	, 2015,	Jean-Pa	aul							
4	CM: ce	nter	of mass	referen	nce fra	me						
5	n	h	' (vert)		1' (horiz)		k'	(poten	t)		
6	0	0.0	000000000	0D+00	0.0000	000000D-	+00	-1.000	000000	0D+00		
7	1	-0.0	28711298	8D+01	0.1045	044062D-	+00	-1.000	000000	0D+00		
8	2	-0.9	94587059	1D+00	0.2411	251588D-	-01	-0.305	770336	0D+00		
9	3	-0.1	.05465302	1D+01	0.7085	493677D-	-01	-0.196	272236	3D+00		
10	4	-0.1	05778389	5D+01	0.5958	723183D-	-01	-0.133	790589	7D+00		
11	5	-0.1	.09118591	5D+01	0.4702	627503D	-01	-0.104	761797	6D+00		
12	6	-0.1	14925365	6D+01	0.3940	811757D-	-01	-0.903	495805	1D-01		
13	7	-0.1	21836320	1D+01	0.3499	400649D	-01	-0.820	573390	6D-01		
14	8	-0.1	29047366	1D+01	0.3225	123202D-	-01	-0.765	234896	7D-01		
15	9	-0.1	.36184786	5D+01	0.3038	562458D-	-01	-0.723	928769	0D-01		
16	10	-0.1	43098176	1D+01	0.2902	258995D-	-01	-0.690	776844	1D-01		
17	11	-0.1	49737745	8D+01	0.2798	156018D-	-01	-0.662	938212	2D-01		
18	12	-0.1	56093485	5D+01	0.2716	367080D-	-01	-0.638	847505	9D-01		
19	13	-0.1	62171559	3D+01	0.2650	554043D-	-01	-0.617	553611	9D-01		
20	14	-0.1	67977037	9D+01	0.2596	800569D-	-01	-0.598	385601	9D-01		
21	15	-0.1	73519831	0D+01	0.2551	661917D	-01	-0.580	896515	5D-01		
22	16	-0.1	78808825	0D+01	0.2512	667367D-	-01	-0.564	748882	8D-01		
23	17	-0.1	83844806	9D+01	0.2478	452380D-	-01	-0.549	661031	4D-01		
24	18	-0.1	88644047	4D+01	0.2447	083426D-	-01	-0.535	490131	5D-01		
25	19	-0.1	93208448	0D+01	0.2417	919471D	-01	-0.522	060705	1D-01		
26	20	-0.1	.97546590	2D+01	0.2389	862142D-	-01	-0.509	272630	3D-01		
27	21	-0.2	01667797	5D+01	0.2362	510597D-	-01	-0.497	040601	1D-01		
28	22	-0.2	05580032	8D+01	0.2335	504487D-	-01	-0.485	305981	3D-01		

7.4.4 The IERS Earth orientation parameter time series file

The IERS Earth orientation parameters (EOP) time series file IERSeopc04.dat (ITRF2008) were stored in the folder C:\ETideLoad4.5_win64en\iers. You can update the EOP time series from the IERS website. For future epochs, the forecast EOP products can be employed. Considering the non-tidal nature of the polar motion, the forecast time should be controlled within half a year.

📰 ec	WWF2006.	dat⊠		ES2004S1	. dat 🖂 🔚 IERS	eopc04. dat🗵										
1																
2																
3				I	INTERNATIONA	L EARTH ROT	ATION AND RE	FERENCE SYST	EMS SERVICE							
- 4					EARTH O	RIENTATION	PARAMETERS									
5					EOP (IERS) 14 CO	4									
6																
7																
8				FORMAT ((3(14),17,2(F11.6),2(F1	2.7),2(F11.6),2(F11.6),2	(F11.7),2(F	12.6))						
9	*****	****	****	******	**********	**********	***********	**********	**********	*****						
10																
11		Date	e	MJD	×	y	UTI-UTC	LOD	ax	ar	x Err	y srr	UTI-UTC ETT	LOD Err	dx Err	ar Err
12		(0)-					S	s	-		-		s	S		-
1.4		(on	orc)													
15	2001	1		51010	0.072506	0 200005	0 0021626	0.0006630	0.000150	-0.000109	0.000061	0.00004	0 0000107	0.0000121	0.000029	0.000030
16	2001	1	2	51011	-0.073500	0.390095	0.0931020	0.0007596	0.000130	-0.000103	0.000061	0.00004	0.0000107	0.0000131	0.000028	0.000030
17	2001	- î	ž	51912	-0.071557	0 401864	0.0916573	0.0008515	0.000132	-0.000074	0.000061	0.00004	7 0 0000034	0.0000131	0.000028	0.000031
18	2001	1	4	51913	-0.071024	0.403840	0.0907195	0.0008969	0.000149	-0.000084	0.000061	0.00004	7 0.0000084	0.0000132	0.000029	0.000031
19	2001	1	5	51914	-0.070723	0.405333	0.0897667	0.0008872	0.000174	-0.000103	0.000060	0.00004	7 0.0000163	0.0000132	0.000029	0.000031
20	2001	1	6	51915	-0.070378	0.406725	0.0889292	0.0008068	0.000199	-0.000122	0.000060	0.00004	7 0.0000221	0.0000132	0,000029	0.000031
21	2001	1	7	51916	-0.070068	0.408041	0.0882375	0.0006463	0.000224	-0.000141	0.000060	0.00004	7 0.0000163	0.0000132	0.000029	0.000031
22	2001	1	8	51917	-0.070205	0.409479	0.0876861	0.0004933	0.000250	-0.000160	0.000060	0.00004	7 0.0000104	0.0000132	0.000029	0.000031
23	2001	1	9	51918	-0.070220	0.410814	0.0872445	0.0004441	0.000275	-0.000179	0.000060	0.00004	6 0.0000046	0.0000132	0.000029	0.000032
24	2001	1	10	51919	-0.069861	0.412336	0.0868199	0.0004186	0.000270	-0.000158	0.000060	0.00004	6 0.0000043	0.0000133	0.000029	0.000031
25	2001	1	11	51920	-0.069330	0.414004	0.0864003	0.0004447	0.000155	-0.000180	0.000059	0.00004	6 0.0000039	0.0000133	0.000029	0.000031
26	2001	1	12	51921	-0.068456	0.416120	0.0858451	0.0005855	0.000106	-0.000203	0.000059	0.00004	6 0.0000088	0.0000133	0.000028	0.000030
27	2001	1	13	51922	-0.067463	0.418251	0.0851161	0.0007422	0.000095	-0.000222	0.000059	0.00004	6 0.0000138	0.0000133	0.000028	0.000030
28	2001	1	14	51923	-0.066479	0.420226	0.0842390	0.0008823	0.000084	-0.000241	0.000059	0.00004	6 0.0000112	0.0000134	0.000028	0.000029
29	2001	1	15	51924	-0.065406	0.422044	0.0833100	0.0009404	0.000072	-0.000259	0.000059	0.00004	6 0.000086	0.0000134	0.000027	0.000028
30	2001	1	16	51925	-0.063999	0.423541	0.0824180	0.0009155	0.000061	-0.000278	0.000059	0.00004	6 0.0000060	0.0000134	0.000027	0.000028
31	2001	1	17	51926	-0.062602	0.425076	0.0816384	0.0007815	0.000050	-0.000297	0.000059	0.00004	6 0.0000034	0.0000135	0.000027	0.000027
32	2001	-	18	51927	-0.061434	0.426438	0.0809369	0.0005/17	0.000307	-0.000078	0.000060	0.00004	6 0.0000060	0.0000135	0.000026	0.000026
33	2001	1	20	51928	-0.060301	0.428009	0.0803992	0.0004021	0.000387	-0.000005	0.000060	0.00004	6 0.0000114	0.0000135	0.000026	0.000025
25	2001	1	21	51929	-0.059173	0.429300	0.070007020	0.0002010	0.000333	-0.000045	0.000060	0.00004	6 0.0000197	0.0000136	0.000025	0.000023
36	2001	1	22	51930	-0.056745	0.431190	0.0799904	-0.0000387	0.000232	-0.000124	0.000060	0.00004	7 0 0000198	0.0000136	0.000023	0.000023
37	2001	1	23	51932	-0.055378	0.432515	0.0800354	-0.0000794	0.000180	-0.000164	0.000061	0.00004	7 0.0000200	0.0000137	0.000024	0.000022
38	2001	ĩ	24	51933	-0.054038	0.434299	0.0801054	-0.0000531	0.000189	-0.000183	0.000061	0.00004	7 0.0000090	0.0000137	0.000024	0.000022
39	2001	1	25	51934	-0.052227	0.436048	0.0801105	0,0000481	0.000130	-0.000240	0.000061	0.00004	7 0.0000025	0,0000137	0,000023	0.000021
40	2001	1	26	51935	-0.050435	0.438026	0.0799589	0,0001715	0.000101	-0.000252	0.000062	0.00004	8 0.0000160	0.0000137	0.000023	0.000021
41	2001	1	27	51936	-0.049130	0.439812	0.0796787	0.0002940	0.000094	-0.000242	0.000062	0.00004	8 0.0000312	0.0000137	0.000022	0.000020
42	2001	1	28	51937	-0.047602	0.441607	0.0792944	0.0004503	0.000086	-0.000232	0.000062	0.00004	8 0.0000276	0.0000137	0.000022	0.000019
43	2001	1	29	51938	-0.045537	0.443509	0.0788172	0.0005621	0.000079	-0.000221	0.000063	0.00004	8 0.0000239	0.0000138	0.000021	0.000019
44	2001	1	30	51939	-0.043660	0.444974	0.0782782	0.0006019	0.000072	-0.000211	0.000063	0.00004	8 0.0000203	0.0000138	0.000021	0.000018
45	2001	1	31	51940	-0.042067	0.446396	0.0777060	0.0005437	0.000254	-0.000159	0.000063	0.00004	9 0.000063	0.0000138	0.000021	0.000019
46	2001	2	1	51941	-0.040683	0.447325	0.0772066	0.0004689	0.000298	-0.000141	0.000064	0.00004	9 0.000064	0.0000138	0.000022	0.000020
47	2001	2	2	51942	-0.039012	0.448060	0.0767917	0.0003692	0.000290	-0.000134	0.000064	0.00004	9 0.0000143	0.0000138	0.000022	0.000020
48	2001	2	3	51943	-0.037722	0.448868	0.0764837	0.0002097	0.000283	-0.000128	0.000064	0.00004	9 0.0000284	0.0000138	0.000023	0.000021
49	2001	2	4	51944	-0.036102	0.449525	0.0763497	0.0000712	0.000275	-0.000122	0.000064	0.00004	9 0.0000205	0.0000138	0.000023	0.000022
50	2001	2	5	51945	-0.034057	0.450440	0.0763128	-0.0000019	0.000268	-0.000115	0.000064	0.00005	0 0.0000125	0.0000138	0.000024	0.000022

7.4.5 The geocentric motion parameter time series file

The geocentric motion parameter time series file GCN_L1_L2_30d_CF-CM.txt (ITRF2005) were stored in the folder C:\ETideLoad4.5_win64en\iers, which are monthly

variation time series products of geocentric motion parameters measured by 5 satellite laser ranging (SLR) provided by UT/CSR. For future epochs, the forecast products can be employed, but the forecast time should be controlled within three months.

🗄 ECNY	/F2006. dat 🛛 블	FES2004S1.	dat 🛛 🔚	IERSeopc04.	dat 🛛 🔚	GCN_L1_L2_	30d_CF-CM. txt🖂	
1	Year	х	Y	Z	X sig	Y sig	Z_sig	
2	2001.0402	2.50	2.00	5.40	1.78	1.48	4.24	
3	2001.1248	0.65	-1.35	10.75	1.61	1.34	3.68	
4	2001.2128	-0.10	-3.40	3.05	1.61	1.41	3.51	
5	2001.2932	-0.85	-3.55	-4.10	2.82	2.15	3.79	
6	2001.3784	0.40	-2.50	-7.00	1.70	2.30	3.05	
7	2001.4646	-1.65	-1.60	-6.60	1.62	3.30	3.11	
8	2001.5456	-1.55	-2.45	-3.35	1.27	1.85	3.00	
9	2001.6278	-4.45	-0.40	-2.80	1.44	1.90	3.22	
10	2001.7120	-2.05	0.85	-4.05	1.44	1.95	3.34	
11	2001.7911	-1.20	2.05	0.25	1.27	2.05	3.28	
12	2001.8708	0.05	2.05	-2.60	1.44	1.55	3.11	
13	2001.9569	0.05	3.70	-4.60	1.53	1.41	3.39	
14	2002.0399	3.85	4.05	-6.05	1.70	1.75	3.39	
15	2002.1250	1.10	0.25	1.75	1.36	1.27	3.17	
16	2002.2103	0.40	-1.45	3.30	1.44	1.20	2.94	
17	2002.2899	0.50	-2.20	3.10	1.53	1.27	3.34	
18	2002.3769	0.95	-3.45	-0.80	1.44	1.55	5.36	
19	2002.4625	-1.15	-4.50	-5.75	1.62	1.27	2.94	
20	2002.5412	-3.30	-4.90	-4.80	2.16	1.48	2.94	
21	2002.6263	-1.85	0.15	-5.55	1.78	2.35	3.17	
22	2002.7114	-1.85	0.05	0.70	1.53	2.05	3.90	
23	2002.7952	-2.80	-0.30	0.55	1.44	1.90	3.73	
24	2002.8744	-2.75	1.70	0.15	1.44	3.10	3.62	
25	2002.9543	1.75	3.45	9.15	1.95	1.56	5.72	
26	2003.0438	1.40	-0.35	2.40	1.61	1.95	4.19	
27	2003.1279	0.70	0.75	2.30	1.44	1.25	3.28	
28	2003.2108	1.90	-0.05	4.10	1.36	1.55	2.77	
29	2003.2952	1.60	-1.70	2.35	1.78	1.48	3.28	
30	2003.3796	0.50	-3.75	1.35	1.53	1.27	3.16	

7.4.6 Ocean tidal constituent harmonic parameters grid model files

(1) The ocean tidal height model is composed of multiple grid models of all tidal constituent harmonic parameters. Each tidal constituent harmonic parameters are stored as a vector grid file.

(2) All the tidal constituent grid files from an ocean tidal height model should be in a folder with the same grid specifications.

(3) The 10 vector grid files in the folder C:\ ETideLoad4.5_win64en\OceanTide represent the ocean tide model GOT4.8 with 10 global grid models of 10 tidal constituent harmonic parameters.

(4) The type of the tidal constituent is identified by the seventh attribute (Doodson constant) in its grid file header. These files can be named at will.

🔚 M2_got4	. 8. dat 🔀												
1	0.000000	360.0000	00 -90	0.000000	90.000000	0.5000	0000 0.50	0000000	255555				
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

(5) The ocean tidal height model can be global or regional. The ocean tidal height and the harmonic parameters are all in cm as unit.

7.4.7 The JPL Planetary Ephemeris DE405 file

The JPL Planetary Ephemeris DE405 file JEPH.405 was stored in the folder C:\ETideLoad4.5_win64en\iers. The ephemeris starts at 0:00 on 9 December 1599 (JD2305424. 5) and ends at 0:00 on 20 February 2201 (JD2525008. 5).

7.4.8 The correction file of frequency dependence for Love numbers

The correction file IERS2010T65.dat of frequency dependence was generated from Table 6.5a, 6.5b and 6.5c in IERS Conventions (2010), to calculate the corrections of frequency dependence of geopotential Love numbers to obtain the high-accuracy solid tidal effect on the Earth's external geopotential.

7.4.9 The Desai ocean pole tide coefficient file

The ocean pole tide is generated by the centrifugal effect of polar motion on the oceans. Desai (2002) presents a self-consistent equilibrium model of the ocean pole tide. This model accounts for continental boundaries, mass conservation over the oceans, self-gravitation, and load of the ocean floor. Using this model, the ocean pole tide produces the following perturbations to the normalized geopotential coefficients, as a function of the pole shift parameters (m_1, m_2).

😑 echy	/F2006. da	.t 🗵 [FES2004S1. dat 🗵 📒 IERSeo	pc04. dat 🗷 블 GCN_L1_L2_30d_	CF-CM. txt 🗵 🔚 desaiscopole	coef.txt🛛
1	n	m	Anm(Real)	Bnm(Real)	Anm(Imaginary)	Bnm(Imaginary)
2	1	0	1.8736759805448e-02	0.0000000000000e+00	2.9688884960424e-02	0.0000000000000e+00
3	1	1	2.8258913146935e-02	2.1774643075236e-02	2.3898264393684e-02	5.6771602236635e-02
4	2	0	-3.9555099024374e-03	0.0000000000000e+00	6.8390464271953e-04	0.000000000000e+00
5	2	1	-2.4325330521304e-01	5.4680741193318e-03	5.4680741193318e-03	-1.9252111185300e-01
6	2	2	1.9102047023374e-02	1.1158297399424e-02	-1.5123770169928e-02	-2.4857839911518e-04
7	3	0	-2.0869478248378e-02	0.0000000000000e+00	-1.0775272844125e-02	0.000000000000e+00
8	3	1	3.0809252024501e-02	7.4552838003486e-03	5.5937937407386e-03	6.6496877724041e-02
9	3	2	2.3295703062692e-02	3.7984356463618e-02	-2.1678456242839e-03	1.1232359168959e-02
10	3	3	7.9776020803848e-03	1.2502542787182e-02	-2.2341399966187e-02	-2.2979590161975e-02
11	4	0	-1.0612668622736e-02	0.0000000000000e+00	-1.5569196271270e-02	0.000000000000e+00
12	4	1	1.3606306893006e-04	2.2051992576636e-03	2.0130037501025e-03	1.6323514549038e-02
13	4	2	1.1139374002795e-02	1.7031544962514e-02	-7.9621127289889e-03	-8.4440848505132e-04
14	4	3	-1.6100794768731e-02	1.4681986705593e-02	9.5178410813713e-03	-2.1017136590507e-02
15	4	4	4.3132021252707e-03	-4.6836271624465e-03	-2.9309550249205e-03	1.3175690530653e-02
16	5	0	7.0731357453056e-03	0.0000000000000e+00	-1.8023029843730e-03	0.000000000000e+00
17	5	1	2.5644907587134e-03	-1.0076857169607e-02	-9.6273922883022e-03	-1.1684145258283e-02
18	5	2	-7.9615162895536e-03	2.0820461332209e-03	-3.0274671879191e-03	-1.0475800274156e-02
19	5	3	-1.1818705609675e-02	1.2063416189422e-02	-1.6584597520384e-02	-2.8253596831795e-02
20	5	4	9.2731253376468e-03	1.8353138561674e-02	-1.0870088052722e-02	4.7120935900411e-03
21	5	5	1.4460712839068e-02	-8.5510747244577e-03	8.9167437380844e-04	1.6048852898081e-02
22	6	0	7.4439256593180e-03	0.0000000000000e+00	-1.0670986469176e-03	0.0000000000000e+00
23	6	1	1.8261459881891e-02	-3.7775168887123e-03	-3.6768761254667e-03	-1.4329108864964e-03
24	6	2	-8.4568708595335e-03	2.5640802224787e-03	8.0976103423504e-03	-6.3983905389798e-03
25	6	3	-1.5355186088842e-02	1.8642889355748e-03	-9.6956523287846e-03	-2.2353328754893e-02
26	6	4	1.4142224508565e-03	-2.2076728030274e-03	-6.1060835758971e-03	1.4301205310949e-02
27	6	5	3.7744391579465e-03	1.6205935938625e-02	-7.4210466275681e-03	-2.8879881476777e-03
28	6	6	3.2420227193323e-03	-1.0204123402364e-03	6.5738366845630e-03	-6.6744309720085e-03
29	7	0	-1.3403793397592e-03	0.00000000000000e+00	-8.9119937331666e-04	0.0000000000000e+00
30	7	1	-1.1987665799148e-02	3.7952628984046e-03	3.0548620901213e-03	-2.4656687484472e-02
31	7	2	1.3964996790643e-03	1.7659797083036e-03	-9.6345882913594e-04	5.1931284495957e-04
32	7	3	-1.7567622661385e-02	6.8385783341764e-04	9.3943264784830e-03	4.5672879067042e-03
33	7	4	2.8083751020130e-03	4.6098055178789e-04	-9.4429840592558e-03	2.6160014372180e-03
34	7	5	1.3438573148260e-02	-4.9709663788905e-03	5.4401137615611e-03	1.2610209142217e-02
35	7	6	2.3574978727809e-03	-1.8507773876743e-03	-8.8485482473243e-03	-1.7275571315203e-03
36	7	7	1.7687501823906e-03	-3.8588288830715e-03	5.1311168222451e-03	-3.4729764622333e-03
37	8	0	2.4179833053297e-03	0.0000000000000e+00	6.3989330948214e-04	0.000000000000e+00
38	8	1	5.4747795444986e-03	-4.1645492784766e-03	-3.5505342447356e-03	9.2109717009068e-03
39	8	2	-3.5541696851032e-03	-1.0507455458039e-02	-2.8591215118039e-03	-5.7895937048006e-05
40	8	3	-3.6234392832446e-03	5.2650936441460e-03	2.0052526194323e-03	5.9074589159813e-03

The Desai calculating formula of the ocean pole tide adopts the formula (6.23) in the IERS Conventions (2010), and the 360-degree ocean pole tide coefficient file desaiscopolecoef.txt is stored in the folder C:\ETideLoad4.5_win64en\iers.

7.4.10 The center of mass correction coefficient file for the ocean tide

(1) The center of mass correction formula of ocean tide adopts the formula (1.17) in the IERS Conventions (2010). The object of correction is the three-dimensional coordinates of the ground site in the terrestrial reference frame $_{\circ}$

(2) When different tidal models are used to calculate the tidal load effect on the ground site displacement, the corresponding correction coefficients of ocean tide should be used to calculate the center of mass correction.

(3) There are some center of mass correction coefficient files for common ocean tide models stored in the folder C:\ETideLoad4.5_ win64en\ CmcOtide. In which, the center of mass correction coefficients for the ocean tide model FES2004:

🗄 EO	CHWF200	6. dat 🗷 🔚 FES2004S:	L. dat 🗵 🔚 IERSeopc()4. dat 🗵 🔚 GCI	N_L1_L2_30d_CF-CM. txt 🗵 🔚 desais	copolecoef.txt 🛛 🔚 FES2004.cmc🛛
1	(a,1	p,t42,3(2x,2e12	.4))			
2	M2	NCDF FES2004	-1.2661E-03 -	-1.4298E-03	-1.3724E-03 8.2077E-04	1.1479E-03 2.3005E-04
3	S2	NCDF FES2004	-1.7763E-04 -	-5.7273E-04	-5.3350E-04 -3.1591E-04	-5.1370E-05 2.8184E-04
4	N2	NCDF FES2004	-3.2372E-04 -	-2.8986E-04	-2.7121E-04 1.9849E-04	2.6018E-04 -1.4302E-04
5	K2	NCDF FES2004	-1.1814E-04 -	-1.5250E-04	-1.1223E-04 -1.0889E-05	-1.5751E-05 1.2367E-04
6	K1	NCDF FES2004	-1.1370E-03	4.4839E-03	-1.8539E-03 -8.6426E-04	-9.1022E-04 -1.7823E-03
7	01	NCDF FES2004	-1.6802E-04	2.9702E-03	-1.3985E-03 -2.2975E-04	-8.8858E-04 -6.4989E-04
8	P1	NCDF FES2004	-3.6495E-04	1.4941E-03	-6.1436E-04 -2.9129E-04	-2.9261E-04 -5.7461E-04
9	Q1	NCDF FES2004	3.0709E-05	4.5472E-04	-2.7831E-04 -2.9313E-05	-2.1734E-04 -4.1637E-05
10	Mf	NCDF FES2004	-5.0643E-04 -	-7.3040E-05	-2.2065E-04 4.1472E-04	-1.0212E-04 8.2276E-05
11	Mm	NCDF FES2004	-2.7885E-04	2.0596E-05	4.6882E-05 1.8399E-04	-7.4897E-06 1.3209E-05
12	Ssa	NCDF FES2004	-1.4899E-04	2.6146E-06	1.3687E-04 3.5475E-05	-2.4093E-05 3.1666E-07
13		-				